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Abstract: This paper investigates the use of the Method of Inequalities (MoI) to design output-
feedback compensators for the problem of the control of laminar plane Poiseuille flow. In common
with many flows, the dynamics of plane Poiseuille flow are very non-normal. Consequently, small
perturbations grow rapidly with a large transient that may trigger nonlinearities and lead to
turbulence even though such perturbations would, in a linear flow, eventually decay. Such a
system can be described as a conditionally linear system. The sensitivity is measured using the
maximum transient energy growth, which is widely used in the fluids dynamics community. The
paper considers two approaches. In the first, the MoI is used to design low-order proportional
and P+D controllers. In the second approach, the MoI is combined with McFarlane and Glover’s
H∞ loop-shaping design procedure in a mixed-optimization approach. The results show that
the low-order controllers do reduce the maximum transient energy growth but the reduction is
not satisfactory. Furthermore, the H∞ approach does not improve the performance.

Keywords: Transient energy growth, transient behaviour, flow control, Poiseuille flow, Method
of Inequalities (MoI), mixed optimization, H∞-optimization.

1. INTRODUCTION

The problem of stabilizing fluid flows by feedback con-
trol has recently become a topic of much interest [e.g.
Scott Collis et al., 2004]. Fluid flow dynamics are of-
ten highly non-normal — that is their eigenvectors are
closely aligned — and this non-normality is one factor that
makes fluid systems hard to control. Traditionally, fluid
dynamicists have assessed the stability of systems using
Lyapunov’s first method, paying little attention to the
eigenvectors and the system sensitivity. For non-normal
flows this leads to difficulties in resolving the differences
between measured and predicted flow stability [Baggett
et al., 1995]. Plane Poiseuille or channel flow is the unidi-
rectional flow between two infinite parallel planes. This
flow is laminar and stable for low Reynolds numbers,
but at high Reynolds numbers the flow becomes unstable
resulting in turbulence. Experiments show that the flow
undergoes transition to turbulence for Reynolds number
as low as 1000 [Carlson et al., 1982]. However, eigen-
value predictions show the flow to be stable at Reynolds
numbers below approximately 5772 [Orszag, 1971]. The
non-normal nature of the dynamics makes the flow very
sensitive. Hence an initial perturbation will grow to very
large values before decaying. This can drive the system
into regions where the non-linearities are significant and
trigger turbulence.

The system dynamics can thus be considered as condi-
tionally linear [Zakian, 1979]. That is, the system can
be considered linear provided the state remains within
some region of the state space that is sufficiently close
to the steady state. In this paper, we explicitly consider
the energy of perturbations (or transient energy) which is a

measure of the size of the perturbations of the state. It has
a clear physical meaning and is a fundamental notion in
the study of turbulence and transition. Consequently, the
maximum transient energy growth following some energy-
bounded initial state perturbation is often used as a per-
formance measure for fluid flow systems [e.g. Schmid and
Henningson, 2001, Bewley and Liu, 1998].

The problem of controlling plane Poiseuille flow has re-
ceived some study. For example, optimal linear quadratic
methods have been considered by Bewley and Liu [1998]
and by McKernan et al. [2007]. In these papers, the maxi-
mum transient energy growth is considered in the analysis
of the design, but not explicitly in the design formula-
tion. State feedback control that can minimise an upper
bound on the maximum transient energy growth for plane
Poiseuille flow is considered in Whidborne et al. [2008].
However, state feedback is not available for fluid flow sys-
tems. The actual maximum transient energy growth can,
in principle, be minimized for the output feedback problem
[Whidborne and McKernan, 2007], but the method is too
computationally expensive for the Poiseille flow problem.
Furthermore it results in extremely high order controllers.
Thus this paper considers two approaches that use the
Method of Inequalities (MoI). In the first, the MoI is
used to design low-order controllers, namely proportional
and P+D controllers. In the second approach, the MoI is
combined with McFarlane and Glover’s H∞ loop-shaping
design procedure in a mixed-optimization approach.

A summary of the derivation of the state-space model is
presented in the next section. This material can also be
found in Whidborne et al. [2008], but is reproduced here
for convenience. A more detailed exposition can be found
in McKernan et al. [2006], and full details in McKernan



[2006]. Section 3 defines the maximum transient energy
growth and proposes that the control signal magnitude is
measured in a similar way. The MoI and mixed optimiza-
tion are introduced in Sections 4 and 5 respectively. The
design results are given in Section 6. Finally, comments
and conclusions are provided.

2. PLANE POISEUILLE FLOW

Incompressible fluid flow is described by the Navier-Stokes
and continuity equations. The Navier-Stokes equations

U̇ + (U · ∇) U = −
1

ρ
∇P +

µ

ρ
∇2

U (1)

form a set of three coupled, non-linear, partial differential
equations representing conservation of momentum where
U is velocity, P is pressure, ρ is density (uniform) and µ
is viscosity (uniform), and the continuity equation

∇ · U = 0 (2)

is an additional constraint representing the conservation
of mass.
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Fig. 1. Plane Poiseuille flow.

Laminar Poiseuille flow, shown in Figure 1, has a parabolic
streamwise velocity profile, with no slip occurring at the
bounding parallel planes. It undergoes transition to tur-
bulence when small perturbations u = (u, v, w), p about
the steady base profile, U b = ((1 − (y/h)2)Ucl, 0, 0), Pb,
grow spatially and temporally to form a self-sustaining
turbulent flow. The Navier-Stokes equations for the per-
turbations about the base flow, U b, become

u̇ + (u · ∇) u + (U b · ∇) u + (u · ∇) U b = −
1

ρ
∇p +

µ

ρ
∇2

u

(3)
Assuming the perturbations are small compared to the
base flow, the second-order nonlinear term, (u · ∇) u, can
be discarded. Non-dimensionalizing (3) by dividing length
scales by the channel half-height h, dividing velocities by
the base centreline velocity Ucl and dividing pressure by
ρU2

cl, gives

u̇ + (U b · ∇) u + (u · ∇) U b = −∇p +
1

R
∇2

u (4)

where R := ρUclh/µ is the dimensionless Reynolds num-
ber. Being linear, the continuity equation, (2), simply
becomes

∇ · u = 0 (5)

The state of the flow can be determined from wall shear
stress and pressure measurements, and the flow can be
influenced by the manipulation of the conditions on its
boundaries, for example by wall transpiration, which is
the injection and suction of fluid at the walls. Hence active
feedback control of the evolution of transition is feasible.
The proposed scheme is shown in Figure 1. However, (4)
and (5) are infinite dimensional, so in order to be able
to use standard finite dimension control methods, and to
ensure that the controller is practically implementable,
they must be approximated by a finite dimension linear
time-invariant system of the form

ẋ = Ax + Bu (6)

y = Cx (7)

However, a straightforward discretisation results in a de-
scriptor system with the form Eẋ = Ax + Bu where E is
singular. This is a consequence of the algebraic constraint
imposed by the continuity equation, (5), that does not
contain pressure.

To proceed, the pressure perturbation term is eliminated
from (4) by substituting (5) giving an expression for the
wall-normal velocity

∂(∇2v)

∂t
+ Ub

∂(∇2v)

∂x
−

∂2Ub

∂y2

∂v

∂x
−

1

R
∇2(∇2v) = 0 (8)

To completely describe a three dimensional flow perturba-
tion, a second equation is required to describe the wall-
normal vorticity, η, where

η =
∂u

∂z
−

∂w

∂x
(9)

and (4) and (5) give

∂η

∂t
+

∂Ub

∂y

∂v

∂z
+ Ub

∂η

∂x
−

1

R
∇2η = 0 (10)

To implement control by wall transpiration, the no-slip
wall boundary conditions at y = ±1 are replaced by pre-
scribed wall transpiration velocities, (u(±1) = 0, v(±1) 6=
0, w(±1) = 0). It is assumed that disturbances on u

vary in the streamwise (x), wall-normal (y), and spanwise
(z) directions. Variations in the wall-normal direction are
assumed to be non-periodic and are represented by a
modified Chebyshev series that fulfils the wall boundary
conditions. Variations in the streamwise and spanwise di-
rections are assumed to have a periodic representation,
ℜ(ei(αx+βz)), so flow disturbances grow in time, but not
in space. The terms α and β are the streamwise and span-
wise wave numbers respectively. Substituting the assumed
solutions into (8) and (10), and assuming an exponential
time variation results in the classical Orr-Sommerfield and
Squire equations respectively.

After some manipulation of the equations, boundary con-
trol of the linearised Navier-Stokes equations in a channel
at a particular wave number pair, (α, β) (with associated
variables denoted by ũ, ṽ, etc), can be represented as a
linear state-space system in the standard form of (6). The
linearised Navier-Stokes equations are evaluated at N loca-
tions in the wall-normal direction (with the locations more
closely spaced near the walls), and the state variables x
are the Chebyshev coefficients of the wall-normal velocity,
ṽ, and vorticity, η̃, perturbations concatenated with the
upper and lower wall ṽ transpiration velocities. For details,
see McKernan [2006].



The inputs, u, are the rates of change of symmetrical and
antisymmetrical components of wall transpiration velocity.
Since these are rates of change, the system contains two
integrators, with eigenvectors representing symmetrical
and antisymmetrical steady-state transpiration from the
walls. The measurements are the wall shear-stress Fourier
coefficients on the upper and lower walls. The Chebyshev
coefficients are complex, but the state-space system is
made real-valued by decomposing it into its real- and
imaginary-valued parts. The test case considered here is
α = 0, β = 2.044, R = 5000. This test case is linearly
stable but has the largest transient energy growth over
all unit initial conditions, time and wave-number pairs,
and represents the very earliest stages of the transition
to turbulence. The model is discretised in the wall-normal
direction with N = 20. The order of the resulting model
is 2N − 2. A 38th order plant model is high for control
purposes, but errors become significant at lower values of
N [McKernan, 2006]. Modelling the turbulence itself would
involve using many more degrees of freedom.

3. TRANSIENT ENERGY GROWTH

Consider the asymptotically stable linear time-invariant
system described by the initial value problem

ẋ = Ax, x(0) = x0, (11)

with A ∈ R
n×n, x0 ∈ R

n which has the continuous
solution x : R+ → R

n, t 7→ Φ(t)x0, where Φ(t) is the
state transition matrix given by

Φ(t) = eAt =
∞
∑

i=0

Aiti/i!. (12)

For simplicity of presentation in this section, the transient
energy, E(t), is defined as

E(t) := max
{

‖x(t)‖
2

: ‖x0‖ = 1
}

. (13)

The maximum transient energy growth, Ê , is defined as

Ê := max {E(t) : t ≥ 0} . (14)

In fluid dynamic practice, the transient energy, E(t), is

E(t) = max
{

‖Wx(t)‖
2

: ‖Wx(0)‖ = 1
}

, (15)

where W > 0 is a constant weight. Hence, for the
remaining results in this section to be applicable to the
laminar plane Poiseuille flow problem, a simple change of
variables x̃ = Wx should be performed.

Now consider the linear time-invariant plant

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t),
(16)

with A ∈ R
n×n, x(t) ∈ R

n, B ∈ R
n×ℓ, u(t) ∈ R

ℓ,
C ∈ R

m×n, y(t) ∈ R
m with feedback controller

ẋk(t) = Akxk(t) + Bky(t), xk(0) = xk0,

u(t) = Ckxk(t) + Dky(t),
(17)

with Ak ∈ R
nk×nk , Bk ∈ R

nk×m, Ck ∈ R
ℓ×nk , Dk ∈

R
ℓ×m. The closed loop system is given by

ẋc(t) = Acxc(t), xc(0) = xc0 (18)

where

Ac :=

[

A + BDkC BCk

BkC Ak

]

, xc(t) :=

[

x(t)
xk(t)

]

. (19)

The maximum transient energy growth of the plant is

Ê = max
{

‖x(t)‖
2

: ‖x0‖ = 1, xk0 = 0, t ≥ 0
}

(20)

and can be evaluated by |||Φc(t)|||
2

where

Φc(t) := [In 0nk
]eAct[In 0nk

]T . (21)

and |||·||| denotes the spectral norm. The transient energy
in the controller states is irrelevant to the problem under
consideration because the controller can always be normal-
ized by appropriate choice of controller state basis. This
is the problem of controller state scaling [see Ahmed and
Belanger, 1984, for example].

In order to limit the amount of effort generated by the
controller in a closed loop system, the maximum control
“transient energy growth” is defined as

Û := max
{

‖u(t)‖
2

: ‖x0‖ = 1, xk0 = 0, t ≥ 0
}

. (22)

4. THE METHOD OF INEQUALITIES(MOI)

In the MoI [Zakian and Al-Naib, 1973], the control design
problem is expressed as a set of algebraic inequalities that
need to be satisfied for a successful design. The design
problem is expressed as

φi(p) ≤ ǫi for i = 1 . . . n, (23)

where ǫi are real numbers, p ∈ P is a real vector
(p1, p2, . . . , pq) chosen from a given set P and φi are real
functions of p. The design goals ǫi are chosen by the
designer and represent the largest tolerable values of the
objective functions φi. The aim of the design is to find a
p that simultaneously satisfies the set of inequalities, such
a point is known as an admissible point.

A solution to the set of inequalities, (23), is obtained
by means of numerical search algorithms. Generally, the
design process is interactive, with the computer providing
information to the designer about conflicting design re-
quirements, and the designer adjusting the inequalities to
explore the various possible solutions to the problem. The
progress of the search algorithm should be monitored, and,
if a solution is not found, the designer may either change
the starting point, relax some of the design goals ǫ or
change the design configuration. Alternatively, if a solution
is found easily, to improve the quality of the design, the
design goals could be tightened or additional design objec-
tives could be included in (23). The design process is thus
a two way process, with the MoI providing information to
the designer about conflicting design requirements, and the
designer making decisions about the ‘trade-offs’ between
design requirements based on this information as well
as on the designer’s knowledge, experience and intuition
about the particular problem. Further details on numerical
algorithms can be found in Zakian and Al-Naib [1973],
Whidborne et al. [1995a], Fonseca and Fleming [1998],
Zakian [2005].

The functions φi(p) are typically functionals of the system
step response, for example the rise-time, overshoot or the
integral absolute error, or functionals of the frequency
response, such as the bandwidth. For the Poiseuille flow
control problem they are taken as the maximum transient
energy growth and the maximum control transient energy
growth. To ensure these are finite, the system must be



closed-loop stable and so a measure of the system stability
needs to be included. One suitable measure is the maxi-
mum real part of the closed-loop eigenvalues

α0 = max
i

{ℜ(λi(Ac))} (24)

where {λi} represents the set of eigenvalues of the closed-
loop system matrix, Ac. Generally, the design parameter,
p, parameterizes a controller with a particular structure
[e.g. Liu et al., 2002] rather than the state space structure
of (17). For example, p = (p1, p2) could parameterize a
P+I controller p1 + p2/s. Because state space realizations
are over-parameterized, this ensures a smaller dimension
of the search space, P.

The Poiseuille flow control problem can be formulated as
follows:

Problem 1. Find a p ∈ P and hence a K(p) such that

α0(p) ≤ ǫα, (25)

Ê(p) ≤ ǫ
Ê
, (26)

Û(p) ≤ ǫ
Û
, (27)

where ǫα, ǫ
Ê
, and ǫ

Ê
are prescribed tolerable values of α0,

Ê , and Û respectively.

5. MIXED OPTIMIZATION
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W2(s)

-
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�

Fig. 2. Controller configuration for LSDP

The MoI can be combined with analytical optimization
techniques in a mixed optimization approach by using the
parameters of the weighting functions generally required
by such techniques as the design parameters [Whidborne
et al., 1994, 1995b, Postlethwaite et al., 1994]. Here, we
use McFarlane and Glover’s loop-shaping design procedure
(LSDP) [McFarlane and Glover, 1990].

The LSDP maximizes robust stability to perturbations on
the normalized coprime factors of a plant weighted by
pre- and post-compensators W1(s) and W2(s) as shown
in Figure 2. An explicit controller K(s) for optimal γ

γ0 = inf
K

∥

∥

∥

∥

[

W−1
1 K
W2

]

(I − GK)−1
[

W−1
2 GW1

]

∥

∥

∥

∥

∞

(28)

can be synthesized, the weights having been simply incor-
porated into the optimal controller Ks(s) so that K =
W1KsW2.

The problem can be formulated as the MoI as follows:

Problem 2. For the system of Figure 2, find a p ∈ P and
hence a (W1,W2)(p) and K such that

γ0(p) ≤ ǫγ , (29)

Ê(p) ≤ ǫ
Ê
, (30)

Û(p) ≤ ǫ
Û
, (31)

where (W1,W2)(p) is a pair of fixed order weighting
functions with real parameters p = (p1, p2, . . . , pq) and

ǫγ , ǫ
Ê
, and ǫ

Û
are prescribed tolerable values of γ0, Ê , and

Û respectively.

6. RESULTS

6.1 Open loop

The transient energy E(t) of the linearized system with
no wall transpiration control is shown in Figure 3. The
maximum transient energy growth is Ê = 4941.
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Fig. 3. Transient energy for open-loop system.

6.2 Low order controllers

The design goals are set at

ǫα = −1 × 10−5, (32)

ǫ
Ê

= 1000, (33)

ǫ
Û

= 10. (34)

Several low-order structures were tried, but no controller
was found that satisfied Problem 1. After a small number
of iterations, the proportional controller

K =

[

0.7474 0.8655 0.3259 −0.7862
0.7855 0.7855 0.2061 0.7757

]

(35)

was obtained with a performance

α0 = −1.7750 × 10−3, (36)

Ê = 2781.4, (37)

Û = 9.7519. (38)

Further iteration resulted in only a small improvement.
The transient energy E(t) is shown in Figure 4, and the
control transient energy is shown in Figure 5. Detail of the
control transient energy is shown in Figure 6.

The P+D controller structure

K(s) = Kp + Kd

(

s

s + a

)

(39)

was tried and after some iteration a controller with a =
14.9058 and

Kp =

[

0.6151 0.4184 1.0055 0.4233
1.4066 0.0563 −0.0266 0.3148

]

(40)

Kd =

[

26.2916 42.0612 4.3891 4.8970
13.1916 92.8310 4.1459 13.3138

]

(41)
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Fig. 4. Transient energy for proportional controller.
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Fig. 5. Control transient energy for proportional controller.
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Fig. 6. Control transient energy for proportional controller
(detail).

was obtained that gave a performance

α0 = −1.7806 × 10−3, (42)

Ê = 2737.4 (43)

Û = 8.913. (44)

This is only a small improvement on the proportional
controller. The transient energy E(t) is shown in Figure 7
and is quite similar to Figure 4, the proportional controller
case.
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Fig. 7. Transient energy for P+D controller.

6.3 Mixed optimization

The design goals are set for Problem 2 at

ǫγ = 5, (45)

ǫ
Ê

= 1000, (46)

ǫ
Û

= 10. (47)

The weighting function W1(s) was tried with a diagonal
P+I structure and a diagonal P+D structure, but a simple
proportional diagonal structure W1 = diag([p1, p2]) was
found to be best. The post-plant weighting was set to be
the identity W2 = I. The resulting controller performance
was fairly insensitive to the values of p, thus W1 = I
was chosen. The design goal, ǫ

Ê
was not satisfied, and

interestingly, the best value of Ê was marginally greater
than that for the proportional controller. The resulting
performance was

γ0 = 1.818, (48)

Ê = 2884.1, (49)

Û = 8.876. (50)

The transient energy E(t) is shown in Figure 8, and the
control transient energy is shown in Figure 9.

7. CONCLUSIONS

In this paper, the design of both low order controllers and
H∞-optimal controllers using the MoI has been performed.
The state feedback controllers obtained in Whidborne
et al. [2008] gave a value of Ê = 883. This is consider-
ably lower than the best value obtained in this study of
Ê = 2737. The optimal H∞ was unable to improve on
the P+D controller and was actually marginally greater.
This indicates that perhaps, for this system, there is little
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Fig. 8. Transient energy for LSDP controller.
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Fig. 9. Control transient energy for LSDP controller.

advantage in dynamic controllers and that the output feed-
back problem as posed here does not have any solutions.
With an increase in computational power, the convex
optimization methods of Whidborne and McKernan [2007]
could be applied to this problem and determine what is the
minimal Ê and whether a solution exists. The problem of
model order reduction for the maximum transient energy
growth problem would aid the design of controllers, but
that is a topic for further study.

Note that the design low-order controllers for the problem
of plane Poiseuille flow has been considered before [Joshi
et al., 1997] but but not the explicit consideration of the
maximum transient energy growth. Similarly, Macfarlane
and Glover’s LSDP has been used for a spatially growing
channel flow [Baramov et al., 2004], but transient energy
growth was also not explicitly considered.
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