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Abstract: The paper presents a general framework for the Frisch scheme and the extended
compensated least squares technique within which two new algorithms for the identification
of single-input single-output linear time-invariant errors-in-variables models are proposed. The
first algorithm is essentially the Frisch scheme using a novel model selection criterion. The
second method is a modification of the extended compensated least squares technique, which
utilizes not only the set of overdetermined normal equations, but also the Frisch equation to
solve the parameter estimation problem. An extensive Monte-Carlo simulation compares the
novel algorithms with existing errors-in-variables identification approaches.
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1. INTRODUCTION

The identification of systems in the errors-in-variables
(EIV) framework has recently attracted considerable at-
tention. The EIV problem can be perceived as a general-
ization of the output error model structure (Ljung [1999])
in which measurement uncertainties are assumed to appear
at the output exclusively. The EIV formulation treats the
system in a symmetric manner allowing, therefore, both
the input and output signals to be subjected to potential
disturbances. This additional degree of freedom leads to a
significant increase of the overall complexity of the identifi-
cation problem giving rise to various techniques. For more
details see Söderström et al. [2002], Söderström [2007]
or Markovsky and Van Huffel [2007]. Two interesting
techniques based on the bias compensating least squares
principle (Stoica and Söderström [1982]) that proved to be
robust and reliable in the EIV framework are: the Frisch
scheme (FS) (Beghelli et al. [1990]) and the extended com-
pensated least squares (ECLS) (Ekman [2005a]). Whilst
the former method shows a significant noise robustness
for a low signal to noise ratio (SNR) (high noise contam-
ination) the latter technique can provide more accurate
estimates in the cases of moderate or high SNR (low noise
contamination), see Ekman [2005a].

This paper presents a generalized framework within which
two new approaches are developed by combining the FS
and the ECLS method. The resulting algorithms seem
to exhibit the relatively high noise robustness from the
FS, while retaining the precision of the ECLS technique,
especially for the moderate SNR cases.

The paper is organized as follows: in the second section
the notation used in the EIV framework together with
the assumptions made and the problem statement are
introduced. The third section reviews the ECLS algorithm

together with the FS. Section four proposes generaliza-
tions of the FS and the ECLS approach and two novel
algorithms are proposed within these frameworks. All al-
gorithms are compared in a numerical simulation study
given in Section five, whilst overall conclusions and further
work are summarized in Section six.

2. NOTATION AND PROBLEM STATEMENT

Consider a discrete linear time-invariant (LTI) single-input
single-output (SISO) system represented by the difference
equation

A(q−1)y0k
= B(q−1)u0k

, (1)

where the polynomials A(q−1) and B(q−1) are given by

A(q−1) , 1 + a1q
−1 + . . . + ana

q−na , (2a)

B(q−1) , b1q
−1 + . . . + bnb

q−nb (2b)

with q−1 being the backward shift operator, defined by
xkq−1 , xk−1. The unknown noise free input and output
signals denoted u0k

and y0k
, respectively, are related to

the available noisy variables, denoted uk and yk, such that

uk = u0k
+ ũk, (3a)

yk = y0k
+ ỹk, (3b)

where ũk and ỹk denote the input and output measure-
ment noise sequences, respectively. The following standard
assumptions, see e.g. Söderström [2006], are introduced:

A1. The LTI system (1) is asymptotically stable, i.e.
A(q−1) has all zeros inside the unit circle.

A2. All system modes are observable and controllable, i.e.
A(q−1) and B(q−1) have no common factors.

A3. The system structure, i.e. na and nb are known a
priori and nb ≤ na.
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Fig. 1. Typical EIV SISO setup.

A3. The true input u0k
is a zero mean, ergodic random

sequence persistently exciting and of sufficiently high
order, i.e. at least of order na + nb.

A4. The input/output noise sequences are ergodic, zero
mean, white processes with unknown variances σũ

and σỹ, respectively, mutually uncorrelated and un-
correlated with the noise free signals u0k

and y0k
,

respectively.

A diagrammatic illustration of the typical EIV setup for
SISO systems is depicted in Figure 1.

The system parameter vector is denoted as

θT ,
[

aT bT
]

∈ R
nθ , (4a)

aT , [a1 . . . ana ] ∈ R
na , (4b)

bT , [b1 . . . bnb
] ∈ R

nb , (4c)

where nθ = na + nb. The extended regressor vectors for
the measured data are defined as

ϕ̄T
k ,

[

−yk ϕT
k

]

∈ R
nθ+1, (5a)

ϕ̄T
yk

,
[

−yk ϕT
yk

]

∈ R
na+1, (5b)

where

ϕT
k ,

[

ϕT
yk

ϕT
uk

]

∈R
nθ , (5c)

ϕT
yk

, [−yk−1 . . . − yk−na
] ∈ R

na , (5d)

ϕT
uk

, [uk−1 . . . uk−nb
] ∈ R

nb . (5e)

The noise contributions in the corresponding regressor

vectors are denoted by a tilde, i.e. [̃·], whereas the noise-
free signals are denoted by a zero subscript, i.e. [·]0. From
A4 it follows that

ϕ̄k = ϕ̄0k
+ ˜̄ϕk. (6)

The notation Σcd is used as a general notion for the
covariance matrix of the vectors ck and dk, whereas ξcf

is utilized for a covariance vector with f being a scalar,
i.e.

Σcd , E
[

ckdT
k

]

, Σc , E
[

ckcT
k

]

, ξcf , E [ckfk] . (7)

The corresponding estimates are denoted

Σ̂cd ,
1

N

N
∑

k=1

ckdT
k , Σ̂c ,

1

N

N
∑

k=1

ckcT
k , ξ̂cf ,

1

N

N
∑

k=1

ckfk.

(8)

In addition, 0c×d denotes the null matrix of arbitrary
dimension c × d and a single index is used in the case of
a column vector as well as in the case of a square matrix,
e.g. the identity matrix Ic.

The dynamic identification problem in the EIV framework
considered here is formulated as:

Problem 1. Given N samples of the measured signals
{uk}

N
k=1 and {yk}

N
k=1, determine the vector

ϑT ,
[

θT σũ σỹ

]

∈ R
nθ+2. (9)

3. REVIEW

3.1 Extended bias compensated least squares (EBCLS)

The system (1-3) can be reformulated in the equation error
form as

yk = ϕT
k θ + ek, (10)

where the residual is given by

ek = ỹk − ϕ̃T
k θ. (11)

Denoting an estimate by [̂·], the generalized solution of the
system (10) in the least squares (LS) sense is given by

θ̂ = Σ̂†
xϕξ̂xy (12)

where [·]† is the Moore-Penrose pseudo inverse operator

defined by A† , (AT A)−1AT , xk ∈ R
nx denotes an

arbitrary instrumental vector with nx ≥ nθ and the co-
variance elements are defined according to (8). Note that
for the case when xk = ϕk the basic LS estimate is ob-
tained, whilst an arbitrary xk gives rise to the instrumental
variable (IV) estimator (see Ekman [2005b]). Due to the
measurement noise, it is the case that unless the elements
of xk are uncorrelated with ϕ̃k, the solution obtained is
biased. In order to achieve a consistent estimate of θ, a bias
compensation procedure must be carried out Söderström
[2007]).

This yields the EBCLS estimator given by

θ̂EBCLS ,

(

Σ̂xϕ − Σ̂x̃ϕ̃

)† (

ξ̂xy − ξ̂x̃ỹ

)

, (13)

Note that Σ̂x̃ϕ̃ and ξ̂x̃ỹ, in general, are functions of σ̂ũ and
σ̂ỹ depending on the elements contained in the instrument
vector x. It remains to determine the estimated input and
output measurement noise variances σ̂ũ and σ̂ỹ . Different
approaches are discussed in the subsequent development.

3.2 The separable nonlinear least squares (SNLS)

One possibility to determine σ̂ũ and σ̂ỹ is the SNLS
approach. With reference to Ekman [2005b], the following
instruments are postulated

xT
k ,

[

ϕT
k φT

k

]

∈ R
nx , (14)

where

φT
k ,

[

φT
yk

φT
uk

]

∈ R
2nφ+2, (15a)

φT
yk

,
[

−yk −yk−na−1 . . . −yk−na−nφ

]

∈ R
nφ+1, (15b)

φT
uk

,
[

uk uk−nb−1 . . . uk−nb−nφ

]

∈ R
nφ+1 (15c)

with nx = nθ + 2nφ + 2 and nφ being defined as the maxi-
mum delay used in φyk

and φuk
. Note that nφ determines

the number of additional equations that are utilised for
solving the identification problem. Consequently, the data
covariance matrices are given by

Σ̂xϕ ,

[

Σ̂ϕ

Σ̂φϕ

]

, ξ̂xy ,

[

ξ̂ϕy

ξ̂φy

]

(16)

and the corresponding noise compensation matrices be-
come in the asymptotic case

Σx̃ϕ̃ ,

[

Σϕ̃

0(2nφ+2)×nθ

]

, ξx̃ỹ ,

[

0nθ

σỹ

02nφ+1

]

(17)



with

Σϕ̃ ,

[

σỹIna
0na×nb

0nb×na
σũInb

]

. (18)

The underpinning idea of the SNLS is to estimate the input
and output measurement noise variances by minimizing
the norm of the resulting residuals

{σ̂ũ, σ̂ỹ} , arg min
σũ,σỹ

V1(σũ, σỹ) (19)

with

V1(σũ, σỹ) , ‖ξ̂xy − ξ̂x̃ỹ −
(

Σ̂xϕ − Σ̂x̃ϕ̃

)

(20)

×
(

Σ̂xϕ − Σ̂x̃ϕ̃

)†(

ξ̂xy − ξ̂x̃ỹ

)

‖2
2.

The problem given by (20) is also referred to as a variable
projection problem (see Golub and Peryera [1973] and
Osborne [2007] for more details). Moreover, the search
space of the optimization problem (20) can be restricted
substantially by utilizing the results of the FS regarding
the maximum admissible values of the input/output noise
variances (Ekman [2005b]).

In the subsequent development the EBCLS algorithm
which makes use of the input and output measurement
noise variances computed by the SNLS, is referred to as
ECLS.

3.3 The Frisch scheme (FS)

The FS approach is based on a particular case of the
EBCLS technique (13) with xk = ϕk, namely the standard
bias compensating least squares (BCLS) approach. This
means that the FS aims to remove the bias embedded
in the estimates calculated via the ordinary LS method
(Beghelli et al. [1990]), hence the BCLS estimate is given
by

θ̂BCLS ,

(

Σ̂ϕ − Σ̂ϕ̃

)−1

ξ̂ϕy. (21)

The major characteristic of the FS is that the output
(or input) measurement noise variance is expressed as a
nonlinear function of the input (or output) measurement
noise variance. The so-called Frisch equation is given by

σ̂FS
ỹ =λmin

[

Σ̂ϕ̄y
−Σ̂ϕ̄yϕu

(

Σ̂ϕu
−σũInb

)

−1Σ̂ϕuϕ̄y

]

, (22)

where λmin[·] is the least eigenvalue operator. In addition,
a maximal admissible value of σũ can be determined by

σ̂max
ũ = λmin

[

Σ̂ϕu
− Σ̂ϕuϕ̄y

Σ̂−1
ϕ̄y

Σ̂ϕ̄yϕu

]

. (23)

Equation (22) defines a whole set of Frisch models char-
acterized by a convex curve in the noise space. In order
to solve the identification problem, it remains to select
a particular model which is uniquely characterized by an
estimate of σũ. Three common model selection criteria are:

Extended model criterion (EM): The Frisch equation
is evaluated for the nominal and the extended model
structure within the range 0 ≤ σ̂ũ ≤ σ̂max

ũ . This results
in two curves in the so-called noise plane that theoret-
ically intersect at a unique point, which corresponds to
their true values (Beghelli et al. [1990]). The algorithm
is denoted as FSEM.

Covariance match criterion (CM): Statistical proper-
ties of the residuals computed from the system are com-
pared with those predicted from a certain model (Diversi
et al. [2003]). This algorithm is denoted as FSCM.

Yule-Walker criterion (YW): The set of high order
Yule-Walker equations can be exploited, which is equiv-
alent to the utilization of an additional IV estimator
that assesses the quality of the admissible solutions. In
Diversi et al. [2006], the instrument vector is given by

ζT
k ,

[

uk−nb−nζ
· · · uk−nb−1

]

, (24)

where nζ ≥ nθ + 1 is user specified. The corresponding
algorithm is denoted as FSYW.

A comprehensive study of these different methods can be
found in Hong et al. [2007].

4. NOVEL ALGORITHMS

4.1 Generalized ECLS framework

This section presents a generalization of the ECLS algo-
rithm, denoted the GCLS framework.

Choice of the same instrument vector xk within (20) and
(13) is unnecessarily restrictive. A more general ECLS
scheme is given by

θ̂GCLS ,

(

Σ̂z1ϕ − Σ̂z̃1ϕ̃

)† (

ξ̂z1y − ξ̂z̃1ỹ

)

(25)

with σũ and σỹ being obtained by minimizing

V2(σũ, σỹ) , ‖ξ̂z2y − ξ̂z̃2ỹ −
(

Σ̂z2ϕ − Σ̂z̃2ϕ̃

)

× (Σ̂z3ϕ − Σ̂z̃3ϕ̃

)†(

ξ̂z3y − ξ̂z̃3ỹ

)

‖2
p, (26)

where p denotes a user chosen norm and z1k
, z2k

and
z3k

are arbitrarily chosen instrument vectors. The GCLS
framework is hence given by:

Framework 1. (GCLS).

(1) Choose p and the instruments z1k
, z2k

and z3k
.

(2) Compute the input and output measurement noise
variances, i.e.

{σ̂ũ, σ̂ỹ} = arg min
σũ,σỹ

V2(σũ, σỹ). (27)

(3) Determine the parameter vector from (25).

Note that the ECLS is a particular case with p = 2 and
z1k

= z2k
= z3k

= xk as defined in (14).

4.2 Algorithm framework based on GCLS and the FS

Inspired by the GCLS approach, it is possible to reduce
the optimization problem given by (27) to a minimization
over a single variable only, using the Frisch equation (22).
This leads to a novel framework, denoted GCLS-FS, which
is given by:

Framework 2. (GCLS-FS).

(1) Choose p and the instruments z1k
, z2k

and z3k
.

(2) Compute the input measurement noise variance, i.e.

σ̂ũ = arg min
σũ

V2(σũ, σ̂FS
ỹ ), (28)

where dependency on σ̂FS
ỹ is substituted via (22).

(3) Compute the resulting output measurement noise
variance using (22).

(4) Determine the parameter vector from (25).

Note that the algorithms within the GCLS-FS framework
only belong to the family of FS algorithms if z1k

= ϕk is



Algorithm z1k
z2k

z3k
Framework FS Reference

FSYW ϕk ζk ϕk GCLS-FS (Frisch equation utilized) yes Diversi et al. [2006]

Algorithm 1 ϕk xk xk GCLS-FS (Frisch equation utilized) yes novel

Algorithm 2 xk xk xk GCLS-FS (Frisch equation utilized) no novel

ECLS xk xk xk GCLS (Frisch equation not utilized) no Ekman [2005b]

Table 1. Overview of estimators within the proposed general frameworks.

selected. In general, z1k
may contain arbitrary instruments

with the consequence that the estimated parameter vector
is not exclusively dependent on the computed input and
output noise variances. This means that {σũ, σỹ} does not
uniquely map into the parameter space, which is one of
the major characteristics of the FS (Beghelli et al. [1990]).
In the case where z1k

= ϕk holds, the ‘Frisch-character’
of the solution is retained and (28) can be interpreted
as a general model selection criterion for the FS. Hence,
this encompasses the YW criterion as a special case by
choosing z2k

= ζk defined in (24) and selecting z3k
= ϕk.

Furthermore, it is outlined in Hong et al. [2007], that under
certain conditions the FSYW and the FSEM are equivalent,
hence the FSEM can also be interpreted in the GCLS-FS
framework.

4.3 Two particular GCLS-FS realizations

Based on the choice of the instrument vectors in (25) and
(26), an arbitrary number of estimators can be created.
Two particular choices are proposed in this section. The
first algorithm belongs to the family of FS algorithms
utilizing a novel model selection criteria. It is denoted
Algorithm 1 and the model selection criterion is defined
by selecting z1k

= ϕk and z2k
= z3k

= xk. This means
that Algorithm 1 is equivalent to the FSYW where the
instrumental vector ζk is replaced by xk given in (14).
Consequently this algorithm is the FS with a novel model
selection criterion. The algorithm can be summarized as:

Algorithm 1.

(1) Set p = 2 and specify the instruments as z1k
= ϕk,

z2k
= z3k

= xk.
(2) Compute the input measurement noise variance by

(28) where dependency on σ̂FS
ỹ is substituted via (22).

(3) Compute the resulting output measurement noise
variance using (22).

(4) Determine the parameter vector from (25) (which is
reduced to (21)).

The second algorithm, denoted Algorithm 2, does not
belong to the family of FS algorithms, since z1k

= xk

is chosen. In addition, as in the case of Algorithm 1,
z2k

= z3k
= xk is used. This means Algorithm 2 is

essentially the ECLS algorithm which, additionally, makes
use of the Frisch equation.

Algorithm 2.

(1) Set p = 2 and specify the instruments as z1k
= z2k

=
z3k

= xk.
(2) Compute the input measurement noise variance by

(28) where dependency on σ̂FS
ỹ is substituted via (22).

(3) Compute the resulting output measurement noise
variance using (22).

(4) Determine the parameter vector from (25).

Remark 1. Note that the Frisch equation (22) is equiva-
lent to

(

Σϕ̄ −

[

σ̂FS
ỹ Ina+1 0

0 σ̂ũInb

])

ˆ̄θ = 0. (29)

Therefore, if z1 already contains ϕ̄, as in the case of
Algorithm 1, the additional usage of the Frisch equation
(22) may seem redundant. However, by computing σ̂ỹ via
(22), the relation (29) is forced to hold exactly. In contrast,
although the set of equations (29) has been implicitly
utilized to estimate θ, in the case of Algorithm 2 this
relation holds only approximately.

4.4 Overview

A general overview of the algorithms that can be inter-
preted in the proposed GCLS as well as in the GCLS-FS
framework is given in Table 1. The fifth column basically
allows the algorithms to be differentiated according to the
particular framework to which they belong. In addition,
as emphasized in Section 4.2, it is important to note
that, although Algorithm 2 is a member of the GCLS-
FS framework by virtue of utilizing the Frisch equation, it
does not, however, exhibit the FS properties.

5. SIMULATION STUDIES

This section addresses a numerical analysis of the two
proposed algorithms when employed for the identification
of a standard SISO LTI second order system within the
EIV framework. The system is given by the following
discrete-time transfer function

G(q−1) =
1.0q−1 + 0.5q−1

1 − 1.5q−1 + 0.7q−2
, (30)

where the input u0k
is a white zero mean sequence with

variance 0.5. In terms of accuracy, the overall quality of the
estimators is assessed via the following two performance
criteria:

e1 , ‖θ̂j − θ‖2
2, (31a)

e2 , ‖ [σ̂ũ,j σ̂ỹ,j ] − [σũ σỹ ] ‖2
2 (31b)

where j denotes the j − th Monte-Carlo simulation from
which the estimates are computed. It is remarked that
e1 assesses the quality of the estimated parameter vec-
tor, whilst e2 assesses the quality of the estimated in-
put/output noise variances.

5.1 Experiment 1

In the first experiment Algorithm 1 and Algorithm 2
are compared with other EIV techniques, namely FSYW,
FSCM, ECLS as well as with the standard LS for com-
pleteness. In the case of the FSYW method the additional
instruments of length nθ + 1 are constructed as described



Table 2. Results of the estimation of parameters and noise variances with SNR ≈ 10dB and
SNR ≈ 3.5dB.

true FSYW FSCM Algorithm 1 Algorithm 2 ECLS LS

SNR ≈ 10dB

a1 −1.500 −1.497±0.020 −1.497±0.020 −1.500±0.011 −1.500±0.011 −1.500±0.011 −0.855±0.015
a2 0.700 0.697±0.018 0.697±0.018 0.700±0.010 0.700±0.009 0.700±0.009 0.110±0.014
b1 1.000 0.995±0.040 0.996±0.053 0.990±0.052 0.990±0.052 0.991±0.052 0.905±0.028
b2 0.500 0.511±0.065 0.512±0.063 0.505±0.045 0.505±0.045 0.505±0.045 1.044±0.029
σỹ 0.950 0.948±0.028 0.948±0.031 0.949±0.028 0.949±0.028 0.949±0.028 −

σũ 0.050 0.051±0.011 0.051±0.019 0.048±0.013 0.048±0.013 0.048±0.014 −

e1 − 0.007±0.007 0.008±0.007 0.005±0.005 0.005±0.005 0.005±0.005 1.070±0.053
e2 − 0.001±0.001 0.001±0.002 0.001±0.001 0.001±0.001 0.001±0.001 −

SNR ≈ 3.5dB

a1 −1.500 −1.488±0.049 −1.494±0.073 −1.497±0.041 −1.498±0.036 −1.500±0.041 −0.493±0.014
a2 0.700 0.689±0.045 0.695±0.063 0.698±0.036 0.699±0.030 0.700±0.034 −0.140±0.012
b1 1.000 0.998±0.099 0.987±0.182 0.985±0.146 0.985±0.149 1.049±0.461 0.684±0.045
b2 0.500 0.538±0.160 0.532±0.196 0.516±0.125 0.514±0.122 0.479±0.282 1.042±0.046
σỹ 4.275 4.265±0.124 4.266±0.137 4.267±0.126 4.267±0.126 4.262±0.134 −

σũ 0.225 0.231±0.028 0.212±0.092 0.219±0.050 0.219±0.050 0.228±0.074 −

e1 − 0.041±0.044 0.082±0.073 0.040±0.041 0.039±0.041 0.296±1.817 2.117±0.071
e2 − 0.016±0.022 0.027±0.031 0.019±0.023 0.019±0.023 0.024±0.043 −
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Fig. 2. The performance of algorithms as a function of incrementally increasing SNR.

in (24). For the FSCM the time shift and the weighting
matrix parameters are set to unity and the identity matrix,
respectively. The number of instruments for the ECLS,
Algorithm 1 and Algorithm 2 is set to nx = 10, i.e. nφ = 2.
Two scenarios with approximately equal SNR on the input
and output are considered, i.e. SNR ≈ SNRu ≈ SNRy.
The first scenario exhibits SNR ≈ 10dB (σũ = 0.050,
σỹ = 0.950) whereas the second setup uses SNR ≈ 3.5dB
(σũ = 0.225, σỹ = 4.275). The system is simulated using
200 Monte-Carlo runs and N = 5000 samples. The results
of this experiment are given in Table 2, where the mean

values and standard deviations of ϑ̂, e1 and e2 with respect
to the Monte-Carlo simulations are recorded.

It it observed that for the higher SNR (low noise contam-
ination) the ECLS, Algorithm 1 and Algorithm 2 produce
virtually identical results, which, with respect to e1 and
its associated standard deviation, are the better among
the algorithms evaluated. Considering the lower SNR case
(high noise contamination), a substantial decrease in the
quality of the estimates produced by ECLS is observed,
particularly for the estimates of the B(q−1) coefficients.

On the contrary, Algorithm 1 and Algorithm 2 retain
their relatively superior performance yielding the best
performance for the estimates of the unknown system
parameters and hence the lowest value for the index e1

in this case. Note that Algorithm 2 is characterized by
slightly lower values for the associated standard deviations
than Algorithm 1 in this case.

The index e2 reveals that the FSYW method achieves
a slightly better performance for the estimates of the
input/output noise variances. Therefore, it is suspected
that in the case of Algorithm 2, it is the utilization
of the extended normal equations within the final bias
compensation phase that leads to an improved accuracy

of the estimated model parameters θ̂.

5.2 Experiment 2

The performances of the algorithms are evaluated con-
sidering a wider range of the potential SNR. The same
system setup is used as in Experiment 1, however the SNR
is incrementally increased starting from about 0dB up to
about 15dB and preserving the condition SNRu ≈ SNRy.



The performance indices e1 and e2 are recorded and their
mean values are plotted against the SNR in Figure 2(a)
and Figure 2(b), respectively.

Considering e1, it is observed that whilst the ECLS, Al-
gorithm1 and Algorithm2 are characterized by the better
estimates with similar qualities being obtained for the high
SNR cases (low noise contamination), the performance
of the ECLS deteriorates significantly for the SNR levels
lower than about 5dB. A similar observation is apparent
in Figure 2(b), when a decline in the quality of the ECLS
method is noted for the same cases. The performances
of Algorithm 1 and Algorithm 2 are virtually identical
yielding the most accurate estimates for the cases greater
than about 2.5dB. For the lower SNR cases, i.e. when
SNR < 2.5dB the FSYW method seems to produce slightly
smaller values of e1. Considering Figure 2(b) it is observed
that the FSYW obtains the most precise estimates of the
input/output noise variances, whilst Algorithm 1 and Al-
gorithm 2 in general produce the joint second bests.

6. CONCLUSIONS

The extended compensated least squares and the Frisch
scheme for the identification of dynamical linear time-
invariant single-input single-output errors-in-variables mod-
els have been reviewed within generalized frameworks. It is
shown that the well known Frisch scheme - Yule-Walker al-
gorithm as well as the extended compensated least squares
method can be interpreted as members of these general
frameworks. Moreover, two novel algorithms have been
proposed. Whilst the first method belongs to the family of
Frisch scheme algorithms using a novel model selection cri-
terion, the second method is a modification of the extended
compensated least squares technique. An extensive Monte-
Carlo simulation, which compares the proposed algorithms
for different signal-to-noise ratios, has been carried out.
For the cases considered, the new algorithms appear to
combine the advantages of the Frisch scheme and the
extended compensated least squares techniques, which can
yield an improved accuracy of the estimated parameters.

Future work could consider the consistency properties
where these features are suspected to be assured by
the properties inherited from the constituent algorithms.
Moreover, potential extensions to handle the case of
coloured noise on the system output measurements is to
be considered together with the recursive implementation
of the two new algorithms.
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