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Abstract: In this paper, operator based robust nonlinear control system design for multi-input
multi-output nonlinear feedback control systems is proposed, that is, robust stability of the
MIMO systems is studied by using operator based robust right coprime factorization approach.
Some sufficient conditions for the MIMO nonlinear systems to be robust stable are derived. As
a result, robust nonlinear control is designed for the MIMO systems. An example is given to
demonstrate the theoretical analysis.

1. INTRODUCTION

Coprime factorization approach has been considered as an
effective tool for studying operator based robust nonlin-
ear control system design of nonlinear feedback control
systems, including robust stabilization analysis, output
tracking design, and fault detection and so on. Moreover,
right coprime factorization approach provides a convenient
framework for the nonlinear control system design, which
has attracted much attention due to its effectiveness (see
Chen and Han, 1998; Deng and Inoue, 2008; Deng et al.,
2007; Deng et al., 2006; Deng et al., 2004; Deng, Inoue and
Yanou, 2007). A brief summary on the relevant studies is
presented below to lay a foundation for the paper.

Coprime factorization concept has been introduced into
nonlinear feedback control systems since 1980s (see Banos,
1994; Hammer, 1984; Vidyasagar, 1985). Robust right co-
prime factorization of nonlinear plants under perturbation
was studied in Chen and Han (1998). Output tracking
problem with perturbed nonlinear plants (see Deng et
al., 2004) has been considered by extending the condition
given in Chen and Han (1998), and perturbed Bezout
identity was given for the above class of nonlinear plants.
Output tracking problem with different spaces of reference
input and output was discussed (see Deng et al., 2006).
Recently, by using robust right coprime factorization ap-
proach, fault detection in a thermal process control system
with input constraints was solved (see Deng et al., 2007).
Stable robust feedback control system design for unstable
plants with input constraints was studied in Deng, Inoue
and Yanou (2007), and networked based nonlinear control
for an aluminum plate thermal process with time-delays
was designed in Deng and Inoue (2008). However, the ro-
bust nonlinear control system design for multi-input multi-
output nonlinear control systems have seldom been studied
due to the difficulty in dealing with coupling effects.

Multi-input multi-output nonlinear feedback control sys-
tem design is studied in this paper. Robust stability is
considered by using operator based robust right coprime

factorization. The remainder of the paper is organized
as follows. In Section 2, some knowledge about operator
theory is introduced, and one class of MIMO nonlinear
feedback systems is designed. In Section 3, operator based
robust nonlinear system design is considered and some
sufficient conditions for the MIMO systems to be stable are
derived. A numerical example is presented to demonstrate
the proposed design schemes in Section 4 and conclusion
is drawn in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Preliminaries

In this section, some knowledge about operator theory for
feedback control systems is introduced (see Chen and Han,
1998; de Figueiredo and Chen, 1993; Deng et al., 2006).

Let X and Y be linear spaces over the field of real
numbers, Xs and Ys are normed linear subspaces, called
the stable spaces of X and Y . Let Q : X → Y be an
operator, the domain and range of Q is denoted by D(Q)
andR(Q), respectively. We always assume that D(Q) = X
with R(Q) ⊂ Y . In this note, an operator is said to be
bounded input bounded output (BIBO) stable or simply,
stable if Q(Xs) ⊂ Ys.

Definition 1. Let S(X, Y ) be the set of stable operators
mapping from X to Y . Then, S(X,Y ) contains a subset
defined by

U(X,Y ) = {M : M ∈ S(X,Y ),
M is invertible with M−1 ∈ S(Y, X)} (1)

Elements of U(X, Y ) are called unimodular operators.

Consider a normal nonlinear feedback control system
shown in Fig.1, U and V is used to denote the input and
output spaces of a given plant operator P , i.e., P : U → V .

Definition 2. The given plant operator P : U → V is said
to have a right factorization, if there exist a linear space



Fig. 1. A nonlinear feedback system

W and two stable operators D : W → U and N : W → V
such that D is invertible from U to W , and P = ND−1

on U . Such a factorization of P is denoted by (N,D) and
space W is called a quasi − state space of P (The left
factorization means P = D−1).

Definition 3. Let (N, D) be a right factorization of P . The
factorization is said to be coprime, or P is said to have
a right coprime factorization, if there exist two stable
operators A : V → U and B : U → U , satisfying the
Bezout identity

AN + BD = M, for some M ∈ U(W,U), (2)
where B is invertible. Usually, P is unstable and (N, D,
A,B) are to be determined (the so-called system design
problem).

Definition 4. The feedback control system shown in Fig.1
is said to be well − posed, if for every input signal u ∈ U ,
all the signals in the system (i.e., e, z, b and y) are uniquely
determined.

Definition 5. The feedback control system shown in Fig.1
is said to be overall stable, if u ∈ Us, implies that y ∈ Vs,
z ∈ Ws, e ∈ Us and b ∈ Us.

Definition 6. Let Ue and V e be two extended linear
spaces, which are associated respectively with two given
Banach space UB and VB of measurable functions defined
on the time domain [0,∞), where a Banach space is
complete vector with a norm. Let De be a subset of Ue.
A nonlinear operator A : De → V e is called a generalized
Lypschitz operator on De if there exists constant L such
that:

‖[A(x)]T − [A(x̃)]T ‖VB
≤ L‖xT − x̃T ‖UB

. (3)

2.2 Problem statement

To consider nonlinear control system design of MIMO non-
linear feedback control systems by using operator based
robust right coprime factorization, one class of MIMO
nonlinear control systems is described and problem setup
is given in this subsection.

Consider the multi-input multi-output nonlinear closed-
loop systems shown in Fig.2. Where, P are given nominal
nonlinear plants of the MIMO systems. Let input space,
output space, quasi-state space be U , V , W , and plants
P : U → V . Let the signals of input, error, control input,
quasi-state and plant output be u = (u1, u2, · · · , un) ∈ U ,
e = (e1, e2, · · · , en) ∈ U , z = (z1, z2, · · · , zn) ∈ U ,
w = (w1, w2, · · · , wn) ∈ W and y = (y1, y2, · · · , yn) ∈ V ,
respectively.

For MIMO systems, the given nonlinear plants P : U → V
have right factorization means P = ND−1 and P have

right coprime factorization indicates that the Bezout
identity

AN + BD = M, for some M ∈ U(W,U) (4)
is satisfied, where, A : V → U , B : U → U , D : W → U
and N : W → V are stable operators, B,D are invertible.
Usually, the given plants P are unstable.

Fig. 2. The MIMO nonlinear feedback systems

Remark. Assume that every input signal ui ∈ u belong
to different subspace Ui of input space U , namely, ui ∈
Ui ⊂ U . Similarly, error signal ei ∈ Ui ⊂ U , control input
signal zi ∈ Ui ⊂ U , quasi-state signal wi ∈ Wi ⊂ W , and
plant output signal yi ∈ Vi ⊂ V . For brevity, we mainly
consider two-input two-output nonlinear plants.

For two-input two-output feedback systems, when the
systems are constructed by two independent subsystems,
that is, there is no coupling effects between the two plants
Pi, then the plants outputs yi (i = 1, 2) only have relations
with the corresponding signals ui, ei, zi, wi (i = 1, 2).
Assume that the nominal plant Pi (i = 1, 2) have right
coprime factorization and satisfy the Bezout identity. In
this note, every operator can be divided as the following
forms, A = (A1, A2), B = (B1, B2), D = (D1, D2),
N = (N1, N2), and the Bezout identities are,

AiNi + BiDi = Mi,
for some Mi ∈ U(W,U), i = 1, 2.

(5)

Where, U(W,U) is the set of unimodular operators, Ai :
Vi → Ui, Bi : Ui → Ui, Di : Wi → Ui and Ni : Wi → Vi

are stable, Bi and Di are invertible. Ai, B−1
i (i = 1, 2)

represent the feedback and feedforward controllers of the
subsystems, respectively. Mi of the Bezout identity is
equal to the operator Mi : Wi → Ui of the overall
subsystem. If Mi is unimodular operator, thus the operator
M−1

i : Ui → Wi of the overall subsystem is stable, Ni is
stable because of right coprime factorization. Finally the
systems are internally stable because the two subsystems
are stable.

Generally speaking, there exist coupling effects between
the two subsystems. In order to demonstrate the coupling
effects, suppose that the Bezout identity as (5) is satisfied
for every plant Pi, and exist two internal operators Gi

(i = 1, 2) concerning with the coupling effects. The detail
description is presented below.

Assume that output signal of operator B−1
i is xi ∈ Ui,

namely, xi(t) = B−1
i ei(t), and there exist two operators

G1 : U2 → U1 and G2 : U1 → U2 satisfying that control
input signals

z1(t) = x1(t) + G1(x2)(t),

z2(t) = x2(t) + G2(x1)(t),



such that the coupling effects are concerned with internal
operator Gi. The quasi-state signal is wi(t) = D−1

i (zi)(t),
plant output signal is yi(t) = Ni(wi)(t), thus the systems
described here are multi-input multi-output nonlinear sys-
tems.

The main objective of this paper is to design an operator
based robust nonlinear control system design for the
MIMO nonlinear systems described above.

3. ROBUST NONLINEAR CONTROL SYSTEM
DESIGN

In this section, we study the MIMO nonlinear control
system design by using robust right coprime factorization
approach.

For the MIMO nonlinear feedback systems shown in Fig.2,
based on the description in Section 2, the nominal plant
Pi of every subsystem has right coprime factorization as
(5), and coupling effects between the two subsystems are
concerning with the internal operators Gi (i = 1, 2).

One method for studying the MIMO nonlinear systems is
consider the coupling effects as perturbation effects from
the uncertainties of Di, then, the MIMO nonlinear systems
are divided into two independent perturbed subsystems.
As studied before (see Deng et al., 2006; Deng and Inoue,
2008), the similar conditions as given in Theorem 1 of
Deng et al. (2006) can ensure the stability of the systems.
However, it is difficult to design the systems due to the
uncertainties. Therefore, in order to design the MIMO
systems more detailed, the internal operators are analyzed
as follows.

Theorem 1. For the MIMO nonlinear feedback control
systems described above, assume the systems are well-
posed, and the nominal plants Pi (i = 1, 2) have right
coprime factorization as (5). Suppose that Gi (i = 1, 2) are
stabilizable, that is, G1 and G2 can be stabilized by B−1

2

and B−1
1 , respectively. If M−1

i : Ui → Wi, AiNi : Wi → Ui

(i = 1, 2), B1G1B
−1
2 : U2 → U1 and B2G2B

−1
1 : U1 → U2

are generalized Lypschitz operators have inequalities as
(3) with Lypschitz constants L1, L2, L3 and L3, where
L1L2L3 < 1. Then the systems are overall stable.

proof. Since the Bezout identity satisfied, the systems
have the following relations

u1(t) = M1(w1)(t) + B1G1B
−1
2 (u2 −A2N2w2)(t),

u2(t) = M2(w2)(t) + B2G2B
−1
1 (u1 −A1N1w1)(t).

Based on Contraction Mapping Theorem (see de Figueiredo
and Chen, 1993), it can be derived that for any (u1, u2) ∈
(U1s, U2s) ⊂ Us, the signal pair (w1, w2) is uniquely de-
termined by (u1, u2), and (w1, w2) ∈ (W1s,W2s) ⊂ Ws.
Moreover, it follows that yi ∈ Vis ⊂ Vs, ei ∈ Uis ⊂
Us, zi ∈ Uis ⊂ Us. Then, the systems are overall
stable. 2

If Gi (i = 1, 2) can not be stabilized, then the stability of
MIMO systems is difficult to ensure because of unstable
internal operators. For this reason, right or left factoriza-
tion is an effective way to solve this problem.

Assume that operators Gi can be divided into two parts,
just as Gi = TiS

−1
i . Here, T1 : W2 → U1, S1 = D2 :

W2 → U2, T2 : W1 → U2 and S2 = D1 : W1 → U1

are stable. That is, Gi has right factorization. Assume
that I − G1G2, I − G2G1 are invertible, and B1, B2 can
stabilize (I − G1G2)−1, (I − G2G1)−1 in the sense that
B∗

1 = B1(I − G1G2)−1 and B∗
2 = B2(I − G2G1)−1 are

stable. If operators Ai, B
∗
i satisfy the Bezout identity, then

the MIMO nonlinear systems are stable provided that the
following conditions are satisfied.

Theorem 2. Consider the MIMO nonlinear feedback
control systems shown in Fig.2. Assume the systems are
well-posed, and the nominal plants Pi (i = 1, 2) have right
coprime factorization as (5). When operators Gi (i = 1, 2)
have right factorization as Gi = TiS

−1
i , here, S1 = D2,

S2 = D1 and Ti are stable. Suppose B∗
i is stable, Ai, B

∗
i

satisfy the Bezout identity

AiNi + B∗
i Di = M̃i, M̃i ∈ U(W,U), i = 1, 2. (6)

If M̃i
−1

: Ui → Wi (i = 1, 2), B∗
1T1 : W2 → U1,

B∗
2T2 : W1 → U2 are generalized Lypschitz operators have

inequalities as (3) with the Lypschitz constants L1, L2 and
L2, where L1L2 < 1. Then the systems are overall stable.

Proof. According to the assumption, the internal oper-
ators are factorized as G1 = T1D

−1
2 and G2 = T2D

−1
1 ,

then the signals of the feedback systems have the following
relations

D1(w1)(t)− x1(t) = T1(w2)(t)−G1G2(x1)(t),
D2(w2)(t)− x2(t) = T2(w1)(t)−G2G1(x1)(t).

If the Bezout identity condition (5) is satisfied, then

u1(t) = M̃1(w1)(t)−B∗
1T1(w2)(t),

u2(t) = M̃2(w2)(t)−B∗
2T2(w1)(t). (7)

Since B∗
i Ti are stable, M̃i is unimodular operator and

the Lypschitz condition is satisfied, then for any ui ∈ Us,
it has that wi ∈ Ws. Then, the systems are overall
stable. 2

The internal operator Gi has right factorization, it follows
that the coupling effects between the two subsystems are
equal in a certain degree that one quasi-state signal wi of
plant Pi affecting on the control input signal zj(i 6= j, i, j =
1, 2) of another subsystem. By this means, the coupling
effects are transformed and can be controlled stably. This
ensures the robust stability of the MIMO systems.

In the same way, if the operators Gi (G1 : U2 → U1,
G2 : U1 → U2) can be factorized as Gi = T−1

i Si (Ti =
Di : Wi → Ui, S1 : U2 → W1, S2 : U1 → W2, Ti, Si

(i = 1, 2) are stable), then the coupling effects between
two plants are changed that the control input signal of
one plant affecting the quasi-state of the other plant, the
stability of the feedback systems still can be proved.

As for multi-input multi-output nonlinear systems, the
coupling effects to one plant are the sum of the coupling
effects from other plants, and the amount of relations for
the internal signals is the same as the amount of the inputs.
As a result, Theorems 1 and 2 can be extended to n-input
n-output nonlinear systems.



4. NUMERICAL EXAMPLE

The purpose of this section is to demonstrate the benefit of
the proposed design scheme, where we choose a two-input
two-output nonlinear systems as follows. The first plant is
given in Chen and Han (1998).

P1(ũ1)(t) =
∫ t

0

ũ
1/3
1 (τ)dτ + et/3ũ

1/3
1 (t),

N1(w1)(t) =
∫ t

0

e−τ/3w
1/3
1 (τ)dτ + w

1/3
1 (t),

D1(w1)(t) = e−tw1(t),
the other plant is given as follows,

P2(ũ2)(t) =
∫ t

0

ũ2(τ)dτ,

N2(w2)(t) =
∫ t

0

(1 + eτ )−1w2(τ)dτ,

D2(w2)(t) = (1 + et)−1w2(t).
And the internal operators between the two plants are

G1(ũ)(t) = I(ũ)(t),

G2(ũ)(t) = (1 + e−t)−1(ũ)(t).
Where, ũi ∈ Ui with Pi(ũi) ∈ Vi, U1 = U2 = U = C[0,∞),
V1 = {u + et/3u′|u ∈ C1

[0,∞)} ⊂ U , V2 = U , V = V1 ∪ V2,
it follows that D(Pi) = U and R(Pi) ⊂ V . First, it must
be pointed out that P1, P2 are unstable. Then, it can be
proved that Pi has a right factorization Pi = NiD

−1
i with

Ni : W → V and Di : W → U , and Ni, Di are stable,
where we choose W = U , Ws = Us.

The controllers are designed as

A1(y)(t) =

{
(et − 1)(u′)3(t), if y = u + et/3u′

0, otherwise,
B1(u)(t) = I(u)(t),

A2(y)(t) = ety′(t),

B2(u)(t) = I(u)(t).

It can be verified that the above operators are stable and
they satisfy the Bezout identity,

AiNi(wi)(t) + BiDi(wi)(t) = I(wi)(t),
for all wi ∈ W, i = 1, 2.

Since the internal operators are stable, and the conditions
of Theorem 1 are satisfied, then the two-input two-output
systems are designed stable. In the same way, Theorem 2
can be used in this example. Based on the proposed design
scheme, operator Gi is divided into two parts

S1(w̃2)(t) = (1 + et)−1w̃2(t),

S2(w̃1)(t) = e−tw̃1(t),

T1(w̃2)(t) = (1 + et)−1w̃2(t),

T2(w̃1)(t) = (1 + et)−1w̃1(t).

By Theorem 2, it can be derived that

M̃1(w1)(t) = 2I(w1)(t),

M̃2(w2)(t) = (2I − (1 + et)−1)(w2)(t).

M̃i(i = 1, 2) are unimodular operators and the proposed
conditions of Theorem 2 are satisfied, then the systems are
overall stable. This example demonstrates the effectiveness
of Theorems 1 and 2.

5. CONCLUSION

One class of multi-input multi-output nonlinear control
system design based on operator theory was studied in
this paper. The system stabilization has been discussed
by using robust right coprime factorization approach, and
some sufficient conditions for the system to be robustly
stable were derived. The effectiveness of the proposed de-
sign schemes were also confirmed by a numerical example.
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