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Abstract: It is shown, how to create the continuous system equivalent to the
system with sliding mode control. In the case of minimum phase plants, the
system arises from the replacement of the relay with small hysteresis by the
amplifier with high gain, connected in series with saturation having appropriate
parameters. In the case of nonminimum phase (or other difficult plants) it is noted
that similar equivalence exists for the continuous and relay system with parallel
compensator. The latter system may be treated as the system with modified
sliding mode control. In the equivalent continuous systems the chattering effect,
related with sliding mode control doesn’t exist. c©2008
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1. INTRODUCTION

The control systems which use sliding mode tech-
nique have now good theoretical elaborations (Slo-
tine and Lee, 1991; Utkin, 1992), as well as suc-
cessful practical applications (e.g. commonly used
voltage regulation of car alternators). This kind
of systems operates well both with linear and
nonlinear plants.

It is well known that the systems with sliding
mode control are very robust so they operate well
even in the case of large and rapid parameter
changes. However with the switching action of the
relay, there is connected the so called chattering
effect (Åström, 1989), which sometimes is not
accepted by users and/or actuators. Therefore
chattering decrease is interesting from application
point of view.

There was many trials of decreasing of chatter-
ing effect for instance by applying different am-
plitudes of the relay output for different abso-
lute values of the error (Åström, 1989). Another

approach is based on introduction of so called
boundary layers in which the dependence between
converted error and control is continuous (Slotine
and Lee, 1991). It was noted that the obtained
in this manner control approximates the sliding
mode control.

The considerations of the present paper are re-
lated with the latter approach. In the case of
minimum phase plants for which the sliding mode
control may be applied, the continuous system
with appropriate parameters is created , for which
both the controls: sliding mode and continuous
have the same outputs under the same excitations.

For the case of nonminimum phase plants, when
the usual sliding mode control cannot be applied
the parallel compensator (Gessing, 2007) has been
used to implement modified sliding mode control
(relay control with fast switching without the need
of higher order derivatives approximation used in
usual sliding mode control). It is also shown that
in this case there is similar equivalence between
continuous and relay control systems.



In the described equivalent continuous control
systems the chattering disappears, though from
the point of view of the plant outputs they have
the same properties as the system with sliding
mode control. This is advantage of the considered
continuous control. In connection with that there
arises the question whether the application of the
systems with sliding mode control may be justified
at all.

2. SLIDING MODE CONTROL

The block diagram of the system with sliding
mode control and the characteristic of the relay
are shown in Fig. 1 a and b, respectively. Here the
signals u, y, r, e = r − y are the input, output of
the plant, reference value and error, respectively.
Roughly speaking, the sliding mode control is
based on fast switching of the relay, so that the
generated fast frequency harmonics appearing in
the signal u are filtered by the dynamics of the
plant G and the output y depends mainly on the
averaged value of the input u. The fast switching is
obtained owing to the choice of polynomial C(s),
for which the change of the initial slope of the
response of the signal e∗ to the stepwise change of
u is nonzero and owing to the appropriate choice
of the switched magnitudes −H and +H of the
relay. The choice of C(s) will be described in
details further on.

Fig. 1. a) The system with sliding mode control;
b) characteristic of the relay.

2.1 The Case of Linear Plant

Consider the linear plant described by the transfer
function (TF)

G(s) =
Y (s)

U(s)
=

L(s)

M(s)
(1)

where Y (s) and U(s) are the Laplace transforms
of the plant output y(t) and input u(t), respec-
tively, while L(s) and M(s) are polynomials of m-
th and n-th degree, respectively, m < n, d = n−m
is the relative degree of the TF G(s). Assume that
the TF G(s) has minimum phase zeros.

Block C(s) from Fig. 1a is determined by the
following polynomial

C(s) = c0s
d−1 + c1s

d−2 + ... + cd−2s + 1 (2)

so that the corresponding equation

e∗ = c0e
(d−1) + c1e

(d−2) + ... + cd−2e(1) + e (3)

for e∗ = 0 has stable transients of a good quality
(i.e. with sufficiently fast decay). It may be for

instance C(s) = (Ts + 1)d−1, with multiple root
s1 = −1/T , where T is possibly small time
constant, which gives fast decay of the transient.

Note that, under slowly varying r ( and in an
appropriate region), for the hysteresis of the relay
h → 0 it appears fast switching and we have
e∗ → 0, i.e. e → 0 and y → r. Since the
relay then operates on the vertical segments of
its characteristic, then it may be replaced by the
linear amplifier with high gain k (k → ∞).The
stability of the resulting linear system may be easy
analyzed. Really the characteristic equation of the
closed loop (CL) system takes the form

M(s) + kL(s)C(s) = 0 (4)

Note, that if k → ∞ then m roots of (4) tend
to zeros of L(s), while (d− 1) roots of (4) tend to
zeros of C(s). This means that the resulting linear
system for high gain k (and the analyzed system
with sliding mode control) may be stable only
then when the plant TF G(s) has minimum phase
zeros. This observation justifies the assumption
about minimum phase zeros of the plant G(s),
needed for sliding mode control. Moreover, if
the open loop TF G(s)C(s) has relative degree
equal to one, then the obtained CL system with
minimum phase plant may be stable even for very
high gain k (Gessing, 2006).

In implementation, the higher order derivatives
appearing in (3) may be approximated by substi-
tuting s/(1+sτ) in (2), in the place of the operator
s. Here τ denotes a very small time constant.

Note, that during fast switching the transients of
the system with sliding mode control are described
by the differential equation (2) (for e∗ = 0) with
parameters ci, i = 1, 2, ..., d − 2 independent of
the parameters of the plant. Therefore the system
is very robust. By the appropriate choice of the
parameters ci we may obtain very good transients.

2.2 The Case of Nonlinear Plant

Now, consider the nonlinear plant G described by
the following state equations

ẋ = f(x, u), y = g(x) (5)

where x is n-dimensional state and u, y are scalar
input and output, while f(x, u), g(x) are vector
and scalar functions of the mentioned arguments,
respectively. Also now, the sliding mode control
may be implemented in the system shown in Fig.
1, with the same formulas (2), (3), describing the
polynomial C(s), signal e∗ and the same described
above relay.

One difference in comparison to system with linear
plant described in previous subsection is determi-
nation of the relative degree d – the notion which



is also used in the case of nonlinear plant (Slotine
and Lee, 1991). As in the case of linear plant
d is an integer such that it appears a stepwise
change of the d-th derivative y(d), when it appears
a stepwise change of the input u. The integer d
may be obtained from successive differentiation
of the output y with accounting (5).

Note, that most of the remarks formulated in pre-
vious subsection and concerned implementation
of the sliding mode control are also valid for the
system with nonlinear plants.

The system shown in Fig. 1a, with linear or
nonlinear plant will be called the relay system
with sliding mode control. In this system, when
h → 0 the frequency of oscillations tends to
infinity and the oscillations resulting from this
switching and appearing in the input signal are
filtered by the dynamics of the plant. Denote by
ȳ(t) the output of the plant (linear or nonlinear)
with filtered oscillations.

3. THE EQUIVALENT CONTINUOUS
SYSTEM

Now, consider the system shown in Fig. 2, which
will be called the continuous system with higher
order derivatives in regulator and saturation.The
block k denotes the amplifier with high gain k.
To constrain the control u the additional block
containing control saturation is introduced. It is
described by the formulas: u = umx for v ≥ umx,
u = v for umin ≤ v ≤ umx and u = umin

for v ≤ umin. The plant may be linear with TF
(1), or nonlinear with state equations (5). Good
properties of this kind of systems were discussed
in (Gessing, 2006).

Fig. 2. Continuous system with higher order
derivatives in regulator and saturation.

Note, that if we choose k = H/h, umin = −H ,
umx = H , then two blocks corresponding to gain
k and saturation in Fig. 2 are described by the
formulas: u = −H for e∗ ≤ −h, u = ke∗ for
|e∗| ≤ h and u = H for e∗ ≥ h. Comparing with
description of the relay and accounting that in the
region |e∗| ≤ h the sliding mode causes switching
and linearization, we obtain:

Corollary 1. If in the relay system h → 0 and in
the continuous system umx = +H , umin = −H
and k → ∞ then from the point of view of output
waveforms, the relay system with sliding mode
control is equivalent to the continuous system

with higher order derivatives in regulator and
saturation. This means that for the same external
excitations (reference values or disturbances), for
both the systems the plant output ȳ(t) of the relay
system tends to the output y(t) of the continuous
system.

Of course this means that for small hysteresis h,
high gain k and umx = H+, umin = H−, the
outputs ȳ(t) is very close to y(t). At the same
time one may note that the control signals u(t)
in both the systems are completely different. The
input u(t) in relay system has high frequency
switching, which however after filtering high fre-
quency harmonics tends also to the input of the
continuous system. In the periods where u = umx,
or u = umin the inputs of both the systems take
the same values. This will be confirmed in the
following example.

4. EXAMPLE 1

Consider the nonlinear plant of second order de-
scribed by the state equations

ẋ1 = −2x1 + 4(1 + |u|)u,

ẋ2 = (x1 − x2)
1

1 + |x2|
, y = x2 (6)

The plant model may be interpreted as in series
connection of two first order lag elements – first of
them has the ”gain” 4(1+|u|) dependent on u and
second the ”time constant” (1 + |x2|) dependent
on x2. One may note that for stepwise change of
u there appear stepwise change of ÿ (while ẏ is
continuous). This means that d = 2 and we choose

C(s) = Ts + 1, T = 0.25 (7)

though, one can check that also now, there is great
freedom in choosing polynomial C(s) (smaller T ,
faster response).

In simulations performed in SIMULINK the poly-
nomial C(s) (7) was approximated using formula
s ≈ s/(1 + sτ), τ = 0.01. In simulations the two
systems: relay with sliding mode and continuous
with derivative in regulator and saturation were
compared. For both the systems the experiments
were performed for the following data: r(t) = 12 ·
1(t − 1), (1(t) = 0 for t < 0 and 1(t) = 1 for
t > 0), umx = +H = 5, umin = −H = −5,
h = 0.05, k = 100.

In Fig. 3a the time responses for both the systems
relay and continuous are compared. It is shown
that the responses of both the systems relay and
continuous are very close one to other. From Fig.
3b it results that for both the systems relay and
continuous the controls are the same in the time
intervals where u=5, or u=-5



Fig. 3. Comparison of a) outputs y and b) con-
trols u for relay and continuous systems from
Example 1.

5. CONTINUOUS SYSTEM WITH
NONMINIMUM PHASE PLANT

To control nonminimum phase or other difficult
plants, the parallel compensator has been intro-
duced in (Gessing, 2007). This idea will be re-
minded here for a continuous system and used
to create a system with modified sliding mode
control which will be equivalent to the continuous
one.

The continuous system with parallel compensator
and control saturation is shown in Fig. 4a and b.

Fig. 4. The equivalent block diagrams of the con-
tinuous systems with parallel compensator
and saturation and with outlining a) the re-
placement plant; b) the resulting regulator.

We limit our considerations to linear, stable, but
difficult plants (i.e. nonminimum phase and/or
with delay and/or of higher order) described by
the TF (1). The parallel compensator is described
by the following TF

Gc(s) =
Yc(s)

U(s)
= G1(s) − G(s) (8)

Here Yc(s) is the Laplace transform of the output
yc of the compensator, while G1(s) is the TF
which will be appropriately chosen. Note that in
the proposed structure shown in Fig. 4a the TF
of the replacement plant outlined by the dashed
line is described by

Y1(s)

U(s)
=G(s)+Gc(s)=G1(s) (9)

In the case of regulation, when the reference signal
r = const the TF G1(s) should fulfill the following
condition

G1(0) = G(0) (10)

so that for steady state values it is

yc = 0, y1 = y, e1 = r − y1 = r − y (11)

Since in the considered system a high gain will be
used the replacement plant TF G1(s) should be
chosen appropriately to obtain stable CL system
with proper phase margin. This will be fulfilled
if the TF G1(s) has the relative degree equal to
one and its parameters are appropriately chosen,
as described further on.

5.1 Approximate Description of the Closed Loop

System

The equivalent block diagram of the system from
Fig. 4a is shown in Fig. 4b. Note that the part of
the system outlined by the dashed line contains
the elements of the regulator based on the par-
allel compensator. Assuming that the system has
appropriate phase margin, under high gain k, and
that the system operates in the linear region (i.e.
neglecting the element with saturation) the regu-
lator in the system is described by the following
TF

Gr(s) =
U(s)

E(s)
=

k

1 + kGc(s)
≈

1

Gc(s)
(12)

Accounting (12) we obtain the following formula
describing the CL system

Y (s)

R(s)
=

G(s)/Gc(s)

1 + G(s)/Gc(s)
=

G(s)

G1(s)
(13)

where R(s) = L[r(t)] and L denotes Laplace
transform.

5.2 Design of the Replacement Plant Transfer

Function

Denote by G1(s) =
L1(s)

M1(s)
(14)

a stable replacement plant (9) with minimum
phase zeros. One way of designing G1(s) is to
choose

M1(s) = M(s) (15)

L1(s) = l(1 + sT )n−1, l = L(0) (16)

so the condition (10) is fulfilled.

Denote by ϕ1(ω) the phase of the frequency re-
sponse G1(jω) = L1(jω)/M(jω). Let the phase
ϕ1(ω) fulfills the inequality

−180◦ < ϕ1(ω) ≤ 0 (17)

Since G1(s) has the relative degree equal to one
and limω→∞ϕ1(ω) = −90◦ then the CL system
shown in Fig. 4a (and 4b) is stable and may
have demanded phase margin for very high gain
k. This results from Nyquist criterion of stability
and from the shape of the frequency response of
G1(jω).



Accounting (1), (14), (15) in (13) we obtain for
the CL system

Y (s)

R(s)
=

L(s)

L1(s)
(18)

From these considerations it results that in the
considered case the choice of L1(s) influences the
dynamics of the considered CL system, essentially.
Really the characteristic equation of the CL sys-
tem is

L1(s) = 0 (19)

and its roots influence the velocity of decay of
the transient response. Therefore we choose L1(s)
in the form (16) containing the multiple root
s1 = −1/T . Of course, to obtain fast transient,
we should choose a possibly small time constant
T , for which the condition (17) is fulfilled. For
the chosen T the condition (17) may be easy
checked using MATLAB command nichols(.)

(or nyquist(.)). Some modifications in choosing
L1(s) are possible (Gessing, 2007). It becomes
that appearance of saturation does not change the
property of the system, essentially.

6. MODIFIED SLIDING MODE CONTROL
FOR NONMINIMUM PHASE PLANT

Now, consider the system shown in Fig. 5 in which
it appears the relay in the place of amplifier and
saturation of the system shown in Fig. 4b. One
may think that this system implements a modi-
fied sliding mode control for nonmimnimum phase
plant. As the replacement plant TF G1(s) has
the relative degree equal to one, high frequency
oscillations are generated by fast switching of the
relay, for sufficiently small hysteresis h. They are
filtered by the dynamics of the plant G(s) and
compensator Gc(s). Let ȳ(t) and ȳc(t) be the out-
puts of the plant G(s) and parallel compensator
Gc(s), respectively, in which the high frequency
oscillations are neglected. Since the amplitudes of
the oscillations are small then it is

ȳ(t) ≈ y(t), ȳc(t) ≈ yc(t) (20)

Fig. 5. a) Relay system with modified sliding mode
control

During fast switching the relay operates on verti-
cal segments of its characteristic, therefore in an
approximate description the relay may be treated
as the linear amplifier with very high gain k
(k → ∞ when h → 0).

Let ū(t) be the control signal with filtered high
frequency oscillations, containing the slowly vary-
ing component such that Ȳ (s) = G(s)Ū(s),
where Ȳ (s) = L[ȳ(t)] and Ū(s) = L[ū(t)] Let
Ȳc(s) = L[ȳc(t)] = Gc(s)Ū (s) and Ē(s) = R(s) −
Ȳ (s), R(s) = L[r(t)], Ē1(s) = Ē(s) − Ȳc(s). Dur-
ing fast switching it is |e1| ≤ h and if h → 0 we
have e1 ≈ 0, E1(s) ≈ 0 and Ē1(s) ≈ 0. Since
Ē1(s) = Ē(s) − Gc(s)Ū(s) ≈ 0 then

C(s) =
Ū(s)

Ē(s)
≈

1

Gc(s)
(21)

The formula (21) describes the TF of the regulator
outlined in Fig. 5 by the dashed line. The TF (21)
takes the same form as the formula (12) valid for
continuous system shown in Fig. 4b. Therefore for
the CL system we have

Ȳ (s)

R(s)
=

G(s)/Gc(s)

1 + G(s)/Gc(s)
=

G(s)

G1(s)
(22)

Then the variables ū(t), ē(t), ȳ(t) and r(t), in
which the high frequency oscillations are filtered,
are related by the same TF-s as in the lin-
ear continuous system from Fig 4b the variables
u(t), e(t), y(t) and r(t) are (compare with formulas
(12), (13)). Thus the parallel compensator for
relay system may be designed in the same manner
as previously (for the continuous system).

Strictly speaking the formulas (21), (22) are valid
for the system shown in Fig. 5, if the relay
generates fast switching of the control u from
u = −H to u = +H . In this case the relay may
be replaced by the linear amplifier with high gain
k. However from the characteristic of the relay it
results that the maximal and minimal values of
the control u are determined by +H and −H ,
respectively. In the system shown in Fig. 5 the
relay sometimes gives the values of the control
equal to +H or −H , in some period of time
without fast switching. One may note that both
the cases with and without fast switching may be
accounted by replacing the relay in the system
shown in Fig. 6 by the amplifier with high gain
k (if h → 0 then k → ∞) connected in series
with the element with saturation umx = H and
umin = −H , as in the continuous system shown
in Fig. 4b.

Corollary 2. If in the relay system shown in Fig.
5 the hysteresis of the relay h → 0 and in the
continuous system shown in Fig. 4b umx = +H ,
umin = −H and k → ∞, then from the point of
view of the outputs y, the relay system (Fig. 5)
is equivalent to the continuous system (Fig. 4b).
This means, that for the same external excitations
(reference values or disturbances) appearing in
both the control systems, the plant output ȳ(t)
of the relay system tends to the plant output y(t)
of the continuous system.



7. EXAMPLE 2

Consider the plant described by the following TF

G(s) =
−0.5s + 1

s4 + 3.5s3 + 6s2 + 7s + 3
(23)

The TF G(s) has the following stable poles p1 =
−1.8185, p2 = −0.7343, p3 = −0.4736 + j1.4221,
p4 = −0.4736− j1.4221 and the one nonminimum
phase zero z1 = 2. The plant is of forth order and
nonminimum phase.

To design the parallel compensator we choose
the TF G1(s) in the form determined by (15),
(16). Time constant T has been chosen after
several trials with using MATLAB nichols(.)

command. From these trials it results that for
T = 0.3 the minimal phase of G1(jω) is equal
to −167◦ and the condition (17) is fulfilled with
some margin. Accounting (16) with T = 0.3 we
obtain

G1(s) =
0.027s3 + 0.27s2 + 0.9s + 1

s4 + 3.5s3 + 6s2 + 7s + 3
(24)

Then the formula (8) together with (23) and (24)
gives

Gc(s) =
0.027s3 + 0.27s2 + 1.4s

s4 + 3.5s3 + 6s2 + 7s + 3
(25)

For the relay system assume H = 10, h = 0.005;
for the continuous system assume k = 500, umx =
+H = 10, umin = −H = −10.

Fig. 6. Comparison of a) outputs y and b) controls
u for the continuous and relay system from
Example 2.

The results of simulations for reference value
r(t) = 1(t− 1), for both the systems are shown in
Fig. 6a and b. Solid line is used for the continuous
system and dotted line – for the relay system.
From Fig. 6a it is seen that in accordance with
above considerations the responses of both the
systems are almost the same though the controls
shown in Fig. 6b are completely different. The
controls for both the systems cover only in the
time intervals where they take constant values 10
or -10.

8. FINAL CONCLUSIONS

In the case of minimum phase plants, for which
the usual sliding mode control may be applied,
it is shown how to create the equivalent contin-
uous system, which has the same response y for

the same external excitations. In the equivalent
system the relay is replaced by the amplifier with
high gain k connected in series with the saturation
for which umx = +H and umin = −H . The
equivalence takes place if the relay hysteresis is
small. If not then the output with sliding mode
control has oscillations and the continuous system
from the point of view of the output waveform is
better.

In the case of nonminimum phase, or other diffi-
cult plants, the similar equivalence has been uti-
lized to create the system with modified sliding
mode control. In this system the fast switching of
the relay is obtained with using parallel compen-
sator (Gessing, 2007) (without approximations of
higher order derivatives, as in usual sliding mode
control).

In the equivalent continuous systems the chatter-
ing effect appearing in sliding mode control does
not exist. Then, at the first look it seems, that the
sliding mode control has a weak justification to
be of interest. However sometimes the simplicity
of the actuator in the form of the switch imple-
menting the characteristic of the relay, is more
important than some insignificant decrease of the
control caused by chattering, which may decide
about application of sliding mode control.
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