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Abstract: Path planning  by geometric methods bond to a complete knowledge of the 
environment in order to obtain a feasible solution  are not the best option when solving 
the problem of moving in variable structure   environments. Here a method based on the 
generation of  local  segments that are concatenated to form the total path from a starting 
point to a goal point free of collisions is given . The individual segments are the solutions 
of  local, with respect to the robot, harmonic potential field problems. The information 
needed to properly outline the local harmonic potential field problems is obtained by 
using a system of range sensors that recognize the environment that surrounds the robot.  
Copyright © 2008 IFAC 
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 I  INTRODUCTION  

The mobile robot path planning problem can be 
described as follows: “given a robot and  information 
of its  workspace find an collision free route between 
two specified points” Schwartz (1987). There are 
many methods to derive a solution to this problem: 
the visibility graph (Jarvis, 1985), voronoi diagrams  
(Canny and Donald, 1988), grid  cells (Stentz, 1994), 
and  potential fields (Khatib, 1985). 

The potential field paradigm (PF) began from the 
simple idea of attaching an attractor field to the 
target and a  repeller field fencing the obstacles.  An 
atractor force from the goal point and repeller forces 
from the obstacles are exerted on the mobile. The 
direction of the resultant of these forces is the  
generated  path towards the goal, see  Fig. 1. A great 
advantage on this type of methodology, is that the  
solution may be  used as  part of the control signal 
for the generation of the trajectory; unfortunately, the 
Kathib`s atractor-repeller method  has some 
problems, be the most important the lack of   
guarantee of convergence toward the target. This 
problem is defined as minimal local  problem. 

A lot of improvements to the Khatib’s method have 
been proposed in order to convey the convergence 
problem (Koditschek, 1987); in the 90’s  Conolly 
(Conolly, et al., 1990)  began to work with the 
artificial   harmonic potential fields  (HPF) 
technique, that satisfy the  Laplace equation, these 
techniques guarantee displacements in complex 
environments. Masoud (Masoud, 1997; Masoud and 
Masoud, 2002;  Masoud, 2003)  has worked  in 
different problems using  HPF included an 
evolutionary technique.  
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Fig. 1. Local forces acting on the robot 

 PF path planning methods are classified in two 
areas: the  artificial potential field (APF) methods 
(Khatib, 1985; Koditschek, 1987; Canny 1988) and 
the  artificial intelligence (AI) methods (Baba and 
Kubota, 1994; Prahlad, et al. 2003). 

Many of the AI methods are based on tools like, 
genetic algorithms (Prahlad, et al. 2003; González 
and Reyes, 2006), fuzzy logic (Gerke and Hoyer, 
1998) and neural networks (Kassim and   Kumar , 
1992). These methods are associated with 
optimization  algorithms, resulting in optimal global 
path planning, But, this algorithms are relatively 
complex, and computational time-consuming,  
making them in most of the cases  useless for  real 
time applications. 

The APF approach has the quality of working in real 
time when the environment is known, the 
modifications of the general technique assure the 
convergence of the method and allow the application 
of an  optimization approache.   

     



Masoud (Masoud, 1997)  introduced  the 
evolutionary harmonic potential field (EHPF) 
method to work in partial known environments. The  
method starts with a definition of the goal point and 
the exterior boundaries of the workspace. Then solve 
the boundary value problem (BVP) for an 
biharmonic potential and obtains the possible paths 
that lead to a mobile to achieve the goal. The planner 
manages to lay  a trajectory to the target that avoids 
the obstacles relying only on the data its sensor 
provide. Each time that the sensors detects the 
presence of obstacles to adjust the steering field so 
that the presence of the newly acquired data is 
accomodate. Unlike the Masoud’s method, the 
method presented here makes use of sensor 
recognition system in order to derive local real time 
solutions to the  EHPF. These  partial solutions are 
concatenated to generate  the general solution that 
takes the robot to the target. Simulation has been 
carried out on cluttered environments and excelent 
results have been obtained.  

The paper is divided as follows:   Section II contains 
the problem formulation, Section III shows 
simulation results, and finally conclusions and 
recommendations are given in  section IV. 

 
 
II. EVOLUTIONARY HARMONIC POTENTIAL 

FIELD 

The harmonic potential fields approach was brought 
independently and simultaneously by different 
researchers (Connolly, et al. 1990; Tarassenko and 
Blake, 1991; Akishita, et al. 1990). A significant 
advantage of the HPF approach  is that it avoids  
local minima problem by forcing the differential 
properties of the potential field to satisfy the Laplace 
equation  inside the workspace of the robot (Ω) while 
constraining the properties of the potential at the 
boundary  of Ω (Γ=∂Ω). The boundary set Γ 
includes both the boundaries  of the forbidden zones 
(O) and the target point (xT). A basic setting  of  the 
HPF approach is: 
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 Where V(x) is the harmonic potential field. The 
direction of the gradient generates the paths that take 
the robot from the starting point to the goal point.   

As it was mentioned before it is necessary to 
generate boundary conditions (BC). Appropriate 
application of these conditions allows the correct 
directionality of the field. The problem presented 
above is known as the Dirichlet boundary value 
problem  that is based on border  constant conditions. 
The solutions derived from this BVP produces  
vanishing constant fields making them useless for 
planning. 

The Newmann BVP is defined as follows:  
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where C is a constant,  n is a unit vector normal to Γ, 
{ }0,: >>−=Γ ρρTp xxx  and xs is the 

starting point. Solutions for this problem show no 
vanishing regions even in workspaces with complex 
geometry. A disadvantage present in this approach is 
that it may generate paths dangerously close to the 
obstacles.  

One advantage of the use of HPF, is the possibility to 
obtain a diversity of paths  through which the mobile 
element can arrive to the goal point, making   viable 
to readdressed the mobile to orthogonal paths, when 
in operation.  

HPF approach is  a special case of a broader class of 
planners called: PDE-ODE motion planners where 
the field is generated using the BVP on the basis of 
the BC established by the workspace. It is necessary 
to have a priori knowledge of the complete 
environment to obtain appropriate solutions.  

2.1 Problem Outline 

Different from the classical methods of  HPF 
technique where  full knowledge of the environment 
is a precondition to obtain a general solution, here the 
general solution is obtained by the  union of local 
HPF solutions that allow the mobile move to the 
target. The mobile uses a real time sensor 
 recognition system to get the information of the 
local environment needed for outline the HPF 
problem. 

The environment: Let Ω be a space in which the 
agent is permitted to operate in an n-dimensional 
region Rn (Ω ∈ Rn); let O be a set of  unknown 
regions occupied by obstacles  in Rn  (O=Rn-Ω ), and   
Γ  be the boundary of Ω, and O together 

)( O∂+Ω∂=Γ . 

The agent: It is cover by a  circle R(x) of radius δ 
with boundary γ(x). 

Assume the agent starts at location qs ∈ Ωs1 and its 
target is qg ∈ Ω.  Then, using a set of  sensors located 
on the agent, with maximum range ε, a local space   
Ωs ∈ Ω is recognized. Let  'Γ  be a subset of  Γ  
inside Ωs, with boundary  ∂Ωs, = ''' Γ+Γ  where ''Γ    
are the boundaries free of obstacles on Ωs and let  qp1 
be the projected point, along the  line of sight  
between the starting point and the goal point, on the 
boundary of Ωs1. Fig. 2 shows the workspace, and the 
definition of the local conditions needed for the 
outline of the local evolutionary harmonic potential 
field problem. 
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Fig. 2. Local conditions stablished.  

Now the local  BVP to solve for the local HPF is 
posed as follows: 
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Assuming that there is any obstacle between qs and 
qp1 and using the gradient of the local potential field, 
a segment of the path is obtained and the agent can 
move from qs to qp1. Now,  the point qp1 is taken as 
the point for recognition (qp1 = qs1) of the local 
environment and new boundary conditions are 
derived together with a new projected point qp2, 
establishing  the conditions for the next local 
harmonic potential field problem. This process is  
repeated until the agent reaches the target point. So, 
the general path connecting starting point  with the 
target  turns out to be the finite sum of  individual 
segments Pi(x) i=1,2,…,k or: 
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Where P(x) is the total path.  

Due to uncertainty of the  environment, any different 
scenarios may be encounter by the  agent as it moves 
ahead.  

2.2 Local Planning Algorithm 

Following is the description of the algorithm to find 
the total  path  for different scenarios encountered by 
the agent during the search of the path.  

Step 1.- Activate the sensor system. Switch on a 
sweeping process to obtain a map of the local 
environment. A sensor flags Sk k=1,2,...n, are set to 
one if an obstacle is detected  or zero otherwise, n is 
the number of sensors.  

Step 2.- The informaction of the environment, 
received by the sensors leads to two situations: 

 a).- If Sk =1 for k=1,2,…,n then there is a   wall, 
go to step 4.   

b).- If Sk = 0 for at least one k, then go to step 3   

Step 3.- Set qp on the boundary  ∂Ωs, solve the BVP 
for the local HPF problem. If  ε>− pg qq  

generate the segment of the path from qs to  qp and go 
to step 1.  If not determine the path between qg  and 
qs and  go to step 5.   

Note: When the movement in the mobile is generated 
and the sensors detect a very close obstacle (< 1.5δ), 
stop the mobile, saving the current position as the qp 
value and turns to step 1.  

Step 4.- In this case there could be  two possible 
scenarios as shown in Fig. 3. Let  α, and β be the 
angles between the line of sight of qs and qp and the 
direct lines between the agent and  the points O1, and 
O2 respectively.   If α  > β   then  qp must be  placed 
on ∂Ωs at a distance 2δ from the point O2.. If not  qp 
must be  placed on ∂Ωs at a distance 2δ from the 
point O1.  Solve the HPF problem then go to step 1. 

Note:  If it is a wall the agent will moves along a line 
parallel to it until a different scenario is found. 
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Fig. 3. Place of qp when a wall is in the way of the 

agent.  

Step 5. End 

2.3  Path improvements 

Due to the high uncertainty present during the 
process of determining a path from an starting point 
to a goal point, a first attempt may give as result 
paths with redundancy, longer or with sharp changes 
on orientation . The agent is programmed to store in 
memory the whole path, so it learns, and may 
improve the path after several attempts. 

Next are described  some geometric techniques to 
improve or get rid of the cases mentioned above.    

Case 1. Sharp change on orientation. 

If the angle between the points qs and qp in the ε 
range is greater than 45, use the value of the point qs-1  
that is on the border of the actual Ωs , as the new 
initial point and solve HPF problem for the same  qp. 
That gives as result a more soft path between the 
points qs-1 and qp.  Fig. 4. shows  two possible 
scenarios.  
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Fig. 4. Softness of a sharp turn greater then 45 
degrees. a) angle less than 90°  b) angle 
greater than 90°. 

Case 2. Loops 

 It is possible that when moving the agent is faced 
with the problem to decide between two or more 
directions to continue.  That it is the case of a corner 
between two corridors. Due to uncertainty, the agent 
may take the wrong direction, and faced with the 
decision of turning back to the corner. This at the end 
form a loop that must be  removed, and the agent 
learns not to take that direction. In this case, it is 
necessary to lock backward from the point qs, a point 
with change of direction greater than 45 degrees and 
from this point again, find that point  where the error 
is less than a value λ.  

λ<−=
→→

+ sis qqe      i=1,.., k                     (5) 

If this point exist, all values between qs and that point 
are removed from the approach y solve the new local 
HPF, Fig. 5 shows this case.  
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Fig. 5. Loops found during the path generation. 

 

Case 3. Shorter paths. 

     

The agent may find long intermediate routes free of 
obstacles as can be seen in the first attempt in Fig.6.  
to move from poit qs to point qr,  So, it may be 
possible to find a short route between these two 
points. In order to find out this, a subsequent attempt 
is made by taken the point qr as a regional goal point, 

and start the process of HPF again  from  qs, and  
taking the new intermediate poits qp along the line of 
sight between qs, and  qr.  
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Fig. 6. Obtain a better path. 

Case 4.- Extention corridor 

The agent  may also find free of obstacles straight 
long routes, so making the process of solving the 
HPF problem several times unsuitable.  In order to 
find this path in a single attempt, a change is made to 
the process by using as  Ωs  what is called a  
extention corridor  this is shown in Fig.7. qr is taken 
as qp an the HPF problem is solved for this case. The 
result is a straight path between qs and qr. 
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Fig. 7. Extension corridor technique.      

 
 
 

III SIMULATIONS RESULTS 

The PDE toolbox of MATLAB is used to derive the 
solutions to the BVP of the elliptical problems. Other 
toolboxes were used to obtain the gradients and 
derive the optimal local routes.  The first simulation  
considers an obstacle between the mobile and the 
goal point. The mobile and the  target points are (10, 
11, 0°) and (2, 2, 48°) respectively  with respect to an 
inertial frame. The rectangular obstacle  starts at 
point  (4, 7, 0°) with  6 meters of length and 0.5 
meters of width.  It is assumed that the sonar systems 
has a maximun range of 3 meters. The first scan 
produces the potential field shown in Fig. 8. 



 
Fig. 8. Case of an obstacle between the mobile and 

the goal point. 

After applying the algorithm,  a first attempt is show 
in Fig. 9. 
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Fig. 9. General route for the first attempt. 

 
By applying some of the route  improvement 
techniques defined above a more suitable path is 
found as shown in Fig. 10.    
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Fig. 10. Final path obtained by the EHPF. 

Fig.11. shows the  path obtained by a classical 
method where the entire workspace needs to be 
known. Clearly, sharp undesirable changes are 
present.  

 
Fig. 11. Path obtained by classical PF method. 

Simulation on more complex environments were 
carried out. Fig. 12 and Fig. 13 show the first 
attempt, and the final result respectivally obtained 
after applying the EHPF method. In Fig. 14 it is 
shown the path obtained by a classical method. The 
path obtained by our method resembles  the one 
obtained by classical methods, but with less sharp 
changes. 
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Fig 12. Path obtained by local EPHF. 

 

gq

sq  
Fig. 13. Final path after  improvements. 

     



 
Fig. 14. Path obtained by using the entire map. 

 
 

IV CONCLUSIONS 

In this paper the use of evolutionary harmonic 
potential field techniques was presented. By solving 
the local EHPF based on local sensed information, 
segments of the path were derived in uncertain 
environments. The total path between the starting 
and target points is derived from the concatenations 
of the segments. The method can be used for the case 
of workspace with changing environments, since, 
different from classical PF methods  it does not 
require the knowledge of the entire workspace. The 
authors believe that this technique is better to that 
submitted by Masoud, since it requires less  
information to achive similar responses. Path 
improvement may give as result paths more suitable 
for smooth, faster trajectories of the agent. For future 
research we are looking to make an extension of the 
method to a real time process.  
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