Energy Efficient Scheduling Algorithm for Real-Time Computing Systems

Mason Thammawichai
Dr. Eric C. Kerrigan
Imperial College London

UKACC PhD Presentation Showcase
Introduction

- **Applications: Real-Time Systems**
 - *Multi-robot systems*
 - *Satellite*
 - *Avionic systems*
 - *PEDs*

- **Computing Systems:**
 - *Uniprocessor*
 - *Multiprocessor*
 - Homogenous
 - Heterogeneous
 - *Multi-Core*
 - *Distributed System*

- **Objective: Energy Consumption**
Real-Time Multiprocessor Scheduling Problem

A given task set

A valid schedule on 2 processors
Water Tank Model as Scheduling Dynamics

A fluid Model

Remaining Execution Time

T1

Fluid Schedule

Practical Schedule

Time
Problem Formulation

- Mixed Integer Nonlinear Programming

\[\text{Minimize} \quad \text{Total Energy Consumption} \]
\[\text{subject to} \]
1. Scheduling Dynamic.
2. All tasks meet deadlines.
3. Every task is assigned to only one processor at a given time.

- Reformulation to NLP: Fraction of Execution Time instead of Task Assignment.
Simulation Results

- Simulation Results
- Normalised Energy Consumption vs. Normalised Taskset Utilization
- MINLP, NLP, RT-SVFS, LLREF
Future work

- Feedback Scheduling:

Fluid Scheduling with uncertainty in task execution time

![Graph showing model and real fluid scheduling paths](image)

- Valid Schedule
- Task finished early

Overall Architecture Block Diagram