LASSO-MPC: Model Predictive Control for Over-actuated Systems

Marco Gallieri
Jan M. Maciejowski
University of Cambridge
Over-actuated systems
Introduction

- Potential of over-actuation
 - *High performance (despite constraints)*
 - *Reliability - Fault tolerance*

- Control design must exploit this potential!

- Common solution: control allocation block

What happens here?
Closed-loop stability? Performance?
LASSO-MPC

- **L1-regularisation in MPC**

\[
V_N(x, u) = F(x_N) + \sum_{j=0}^{N-1} x_j^T Q x_j + u_j^T R u_j + \lambda \| S u_j \|_1
\]

- **1-norm penalty gives “sparse” control signals**
 - Some inputs are zero for most of the time
LTI example

\[
A = \begin{bmatrix} 0.15 & 0.1 \\ 0 & 1.1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\]

\[
Q = \begin{bmatrix} 20 & 0 \\ 0 & 60 \end{bmatrix} \quad R = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}
\]

\[|x_j| \leq 20, \quad |u_j| \leq 5.\]

Input 1 is never used

Sharp control allocation for a finite \(\lambda \) (300)
Conclusions

- **LASSO-MPC**: regulation plus control allocation
 - For over-actuated systems or expensive control

- **Research status**
 - *Stabilising formulation: ad-hoc Terminal cost and Terminal constraint*
 - Quasi-infinite horizon, maximal DOA
 - *Offline tuning for extra actuators*
 - Improve pre-existing controllers

- **Future directions**
 - *Setpoint tracking*
 - *Robustness*