Optimal Active Control and Optimization of a Wave Energy Converter

Edo Abraham
Supervisor: Dr Eric Kerrigan
Imperial College London
Motivation

Potential of Wave Energy

- Sustainable Energy for the Globe – distributed and diverse generation
 - 25% of UK energy (~10 GW),
 - ~2TW Globally

- A maturing Marine Technology

Our aim: Efficiency Enhancement via Advanced Control Methods
Optimal Control in a receding horizon scheme

- **Big devices with narrow bandwidth**

- **Maximize energy while satisfying constraints**
 - Nonconvex Cost + Bilinear Dynamics
 - Solution: Bang-Bang Control

- **Efficient Optimal control computations**
 - Projected gradient scheme within Indirect method – Cheaper Control Computations
 - general nonlinear program solvers -- computationally expensive
Results

Optimal Active Control

![Graph showing energy extraction over iterations for different time periods (Tp) with varying significant waves (Hs=1m). The graph plots energy extracted (MJ) against iteration number.]
Results

Optimal Active Control

![Graph showing average power (kW) vs. typical period (Tp) for different methods: Method 1, Method 2, Latching, No Control.](image-url)
Results

➢ Actuator Optimization

Power take off Parameters: dependent on control scheme

\[
\log_{10} B_{pto} \quad (N \cdot s \cdot m^{-1})
\]

\[
\log_{10} \frac{G}{M+\mu_\infty} (kg^{-1})^2
\]
Results

- Actuator Optimization

Power take off Parameters: dependent on control scheme

\[
\log_{10} \left(\frac{G}{M+\mu_\infty} \right) (kg^{-1}) \\
\log_{10} B_{pto} (N s m^{-1})
\]
Summary

- **Conclusion**
 - *Inexpensive and globally convergent optimal control method*
 - *Control Characterization, Device optimization*

- **Related Work**
 - *Observer design for radiation and excitation forces:*
 - *A bilinear system design*
 - *Efficient ODE solvers for bilinear systems and PDE systems*