ITERATIVE LEARNING CONTROL AND ADVANCED TECHNOLOGY FOR FES-BASED UPPER-LIMB STROKE REHABILITATION

Mustafa Kutlu

Supervisors: Dr Chris Freeman, Dr Ann-Marie Hughes, Dr Dina S. Laila

University of Southampton
Motivation

➢ Aim:
 ▪ **Develop technology that enables patients to perform ADLs with potential transference to their own homes.**

➢ Objectives:
 ▪ **To extend the scope of current FES to fully support functional tasks.**
 ▪ **To combine novel sensing approaches with model-based controllers.**
 ▪ **To establish feasibility with stroke patients.**
Iterative Learning Control

Input (FES levels) → System (movement trial) → Output (joint angles)

THEN REPEAT THE PROCESS

Iterative Learning Controller

Ideal reference (joint angles) → Next trial (FES levels)
Goal-Oriented Stroke Assistance by Iterative Learning

4 chronic stroke patients recruited.
Range of Movement increased at shoulder, elbow, wrist and hand.

UKACC PhD Presentation Showcase
Conclusions and future work

- The feasibility of applying precisely controlled FES to multiple muscle groups in the upper limb using advanced sensors, controllers and array hardware was demonstrated.
- The low-cost technologies used also have potential to transfer to patients’ homes, which reduce costs and workloads of physiotherapists.
- The next steps:
 - Fabric electrode will be used.
 - Embedded version will be designed.