Optimal Intermediate Time Allocation of Point-to-Point Iterative Learning Control on a Gantry Robot

Yiyang Chen

Supervisors: Dr Bing Chu and Dr Christopher T. Freeman

University of Southampton

2015 UKACC PhD Presentation Showcase

Southampton

Iterative Learning Control

- Iterative learning control (ILC) :
 - High performance
 - ≻ A **repeated** task
- Benefits:
 - Tracking error converges to zero
- Point-to-point ILC:
 - \succ A subset of time instants, Λ
 - Significant freedom

Fig.1 A Gantry Robot Test Platform

thampton

Motivation

• In current point-to-point ILC, Λ is known *a priori*.

(a) Original Allocation [0.5,1.5]

• The **input energy** $||u||^2$ depends on Λ .

(b) New Allocation [0.65,1.35]

Fig.2 Reference Trajectory Before and after Changing Tracking Time Allocation

Question: Can we design a control law to choose Λ automatically to optimise $||u||^2$ subject to the tracking requirement $r_p = G^p(\Lambda)u$?

Two Stage Design Framework

• **Stage one** : assume Λ is **fixed** and solve:

 $\min_{u} \{f(u) = \|u\|^2\}, \text{ s.t. } r_p = G^p(\Lambda)u$

• Stage two : substitute $u_{\infty}(\Lambda)$ into the original problem:

 $\min_{\Lambda} \{ \tilde{f}(\Lambda) = f(u_{\infty}(\Lambda)) \}$

which cannot be solved **analytically**.

Experimental Verification

Conclusions:

- The proposed algorithm achieves perfect tracking.
- All time points converge to the same time positions.
- Around 35% input energy is saved compared to the input energy at original allocation.

Fig.4 Experimental Results at Z-axis

UNIVERSITY OF

